2 resultados para tropical biodiversity
em National Center for Biotechnology Information - NCBI
Resumo:
Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation.
Resumo:
Tropical wildlands and their biodiversity will survive in perpetuity only through their integration into human society. One protocol for integration is to explicitly recognize conserved tropical wildlands as wildland gardens. A major way to facilitate the generation of goods and services by a wildland garden is to generate a public-domain Yellow Pages for its organisms. Such a Yellow Pages is part and parcel of high-quality search-and-delivery from wildland gardens. And, as they and their organisms become better understood, they become higher quality biodiversity storage devices than are large freezers. One obstacle to wildland garden survival is that specific goods and services, such as biodiversity prospecting, lack development protocols that automatically shunt the profits back to the source. Other obstacles are that environmental services contracts have the unappealing trait of asking for the payment of environmental credit card bills and implying delegation of centralized governmental authority to decentralized social structures. Many of the potential conflicts associated with wildland gardens may be reduced by recognizing two sets of social rules for perpetuating biodiversity and ecosystems, one set for the wildland garden and one set for the agroscape. In the former, maintaining wildland biodiversity and ecosystem survival in perpetuity through minimally damaging use is paramount, while in the agroscape, wild biodiversity and ecosystems are tools for a healthy and productive agroecosystem, and the loss of much of the original is acceptable.