3 resultados para transformation behavior

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic behaviors of liposomes caused by interactions between liposomal membranes and surfactant were studied by direct real-time observation by using high-intensity dark-field microscopy. Solubilization of liposomes by surfactants is thought to be a catastrophic event akin to the explosion of soap bubbles in the air; however, the actual process has not been clarified. We studied this process experimentally and found that liposomes exposed to various surfactants exhibited unusual behavior, namely continuous shrinkage accompanied by intermittent quakes, release of encapsulated liposomes, opening up, and inside–out topological inversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in a persistent impairment of proliferation when the cells are subcultured at low density and a greatly increased probability of neoplastic transformation in assays for transformation. These properties, along with the large accumulation of age pigment bodies in the confluent cells, are cardinal cellular characteristics of aging in organisms and validate the system as a model of cellular aging. Two cultures labeled alpha and beta were obtained after prolonged confluence; both were dominated by cells that were both slowed in growth at low population density and enhanced in growth capacity at high density, a marker of neoplastic transformation. An experiment was designed to study the reversibility of these age-related properties by serial subculture at low density of the two uncloned cultures and their progeny clones derived from assuredly single cells. Both uncloned cultures had many transformed cells and a reduced growth rate on subculture. Serial subculture resulted in a gradual increase in growth rates of both populations, but a reversal of transformation only in the alpha population. The clones originating from both populations varied in the degree of growth impairment and neoplastic transformation. None of the alpha clones increased in growth rate on low density passage nor did the transformed clones among them revert to normal growth behavior. The fastest growing beta clone was originally slower than the control clone, but caught up to it after four weekly subcultures. The other beta clones retained their reduced growth rates. Four of the five beta clones, including the fastest grower, were transformed, and none reverted on subculture. We conclude that the apparent reversal of impaired growth and transformation in the uncloned parental alpha population resulted from the selective growth at low density of fast growing nontransformed clones. The reversal of impaired growth in the uncloned parental beta population was also the result of selective growth of fast growing clones, but in this case they were highly transformed so no apparent reversal of transformation occurred. The clonal results indicate that neither the impaired growth nor the neoplastic transformation found in aging cells is reversible. We discuss the possible contribution of epigenetic and genetic processes to these irreversible changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in the death of some cells in a manner suggestive of apoptosis. Successive rounds of prolonged incubation at confluence of the surviving cells produce increasing neoplastic transformation in the form of increments in saturation density and transformed focus formation. Cells from the postconfluent cultures are given a recovery period of various lengths to remove the direct inhibitory effect of confluence before their growth properties are studied. It is found that with each round of confluence the exponential growth rate of the cells at low densities gets lower and the size of isolated colonies of the same cells shows a similar progressive reduction. The decreased growth rate of cells from the third round of confluence persists for > 60 generations of growth at low density. The proportion of colonies containing giant cells is much higher after a 2-day recovery from confluence than after a 7-day recovery. Retardation of growth at low density and increased saturation density appear to be two sides of the same coin: both occur in the entire population of cells and precede the formation of transformed foci. We propose that the slowdown in growth and the formation of giant cells result from heritable damage to the cells, which in turn drives their transformation. Similar results have been reported for the survivors of x-irradiation and of treatment with chemical carcinogens and are associated with the aging process in animals. We suggest that these changes result from free radical damage to membrane lipids with particular damage to lysosomes. Proteases and nucleases would then be released to progressively modify the growth behavior and genetic stability of the cells toward autonomous proliferation.