4 resultados para time-driven activity-based costing

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the postgenome era rapidly approaching, new strategies for the functional analysis of proteins are needed. To date, proteomics efforts have primarily been confined to recording variations in protein level rather than activity. The ability to profile classes of proteins on the basis of changes in their activity would greatly accelerate both the assignment of protein function and the identification of potential pharmaceutical targets. Here, we describe the chemical synthesis and utility of an active-site directed probe for visualizing dynamics in the expression and function of an entire enzyme family, the serine hydrolases. By reacting this probe, a biotinylated fluorophosphonate referred to as FP-biotin, with crude tissue extracts, we quickly and with high sensitivity detect numerous serine hydrolases, many of which display tissue-restricted patterns of expression. Additionally, we show that FP-biotin labels these proteins in an activity-dependent manner that can be followed kinetically, offering a powerful means to monitor dynamics simultaneously in both protein function and expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200 000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-Inter­national databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cucumber (Cucumis sativa) leaves infiltrated with Pseudomonas syringae pv. syringae cells produced a mobile signal for systemic acquired resistance between 3 and 6 h after inoculation. The production of a mobile signal by inoculated leaves was followed by a transient increase in phenylalanine ammonia-lyase (PAL) activity in the petioles of inoculated leaves and in stems above inoculated leaves; with peaks in activity at 9 and 12 h, respectively, after inoculation. In contrast, PAL activity in inoculated leaves continued to rise slowly for at least 18 h. No increases in PAL activity were detected in healthy leaves of inoculated plants. Two benzoic acid derivatives, salicylic acid (SA) and 4-hydroxybenzoic acid (4HBA), began to accumulate in phloem fluids at about the time PAL activity began to increase, reaching maximum concentrations 15 h after inoculation. The accumulation of SA and 4HBA in phloem fluids was unaffected by the removal of all leaves 6 h after inoculation, and seedlings excised from roots prior to inoculation still accumulated high levels of SA and 4HBA. These results suggest that SA and 4HBA are synthesized de novo in stems and petioles in response to a mobile signal from the inoculated leaf.