6 resultados para time analysis
em National Center for Biotechnology Information - NCBI
Resumo:
Neuronal migration is a critical phase of brain development, where defects can lead to severe ataxia, mental retardation, and seizures. In the developing cerebellum, granule neurons turn on the gene for tissue plasminogen activator (tPA) as they begin their migration into the cerebellar molecular layer. Granule neurons both secrete tPA, an extracellular serine protease that converts the proenzyme plasminogen into the active protease plasmin, and bind tPA to their cell surface. In the nervous system, tPA activity is correlated with neurite outgrowth, neuronal migration, learning, and excitotoxic death. Here we show that compared with their normal counterparts, mice lacking the tPA gene (tPA−/−) have greater than 2-fold more migrating granule neurons in the cerebellar molecular layer during the most active phase of granule cell migration. A real-time analysis of granule cell migration in cerebellar slices of tPA−/− mice shows that granule neurons are migrating 51% as fast as granule neurons in slices from wild-type mice. These findings establish a direct role for tPA in facilitating neuronal migration, and they raise the possibility that late arriving neurons may have altered synaptic interactions.
Resumo:
A method was developed to perform real-time analysis of cytosolic pH of arbuscular mycorrhizal fungi in culture using dye and ratiometric measurements (490/450 nm excitations). The study was mainly performed using photometric analysis, although some data were confirmed using image analysis. The use of nigericin allowed an in vivo calibration. Experimental parameters such as loading time and concentration of the dye were determined so that pH measurements could be made for a steady-state period on viable cells. A characteristic pH profile was observed along hyphae. For Gigaspora margarita, the pH of the tip (0–2 μm) was typically 6.7, increased sharply to 7.0 behind this region (9.5 μm), and decreased over the next 250 μm to a constant value of 6.6. A similar pattern was obtained for Glomus intraradices. The pH profile of G. margarita germ tubes was higher when cultured in the presence of carrot (Daucus carota) hairy roots (nonmycorrhizal). Similarly, extraradical hyphae of G. intraradices had a higher apical pH than the germ tubes. The use of a paper layer to prevent the mycorrhizal roots from being in direct contact with the medium selected hyphae with an even higher cytosolic pH. Results suggest that this method could be useful as a bioassay for studying signal perception and/or H+ cotransport of nutrients by arbuscular mycorrhizal hyphae.
Resumo:
Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.