11 resultados para theory of the mind
em National Center for Biotechnology Information - NCBI
Resumo:
An evolutionary framework for viewing the formation, the stability, the organizational structure, and the social dynamics of biological families is developed. This framework is based upon three conceptual pillars: ecological constraints theory, inclusive fitness theory, and reproductive skew theory. I offer a set of 15 predictions pertaining to living within family groups. The logic of each is discussed, and empirical evidence from family-living vertebrates is summarized. I argue that knowledge of four basic parameters, (i) genetic relatedness, (ii) social dominance, (iii) the benefits of group living, and (iv) the probable success of independent reproduction, can explain many aspects of family life in birds and mammals. I suggest that this evolutionary perspective will provide insights into understanding human family systems as well.
Resumo:
A theory of the unzipping of double-stranded DNA is presented and is compared to recent micromanipulation experiments. It is shown that the interactions that stabilize the double helix and the elastic rigidity of single strands simply determine the sequence-dependent ≈12-pN force threshold for DNA strand separation. Using a semimicroscopic model of the binding between nucleotide strands, we show that the greater rigidity of the strands when formed into double-stranded DNA, relative to that of isolated strands, gives rise to a potential barrier to unzipping. The effects of this barrier are derived analytically. The force to keep the extremities of the molecule at a fixed distance, the kinetic rates for strand unpairing at fixed applied force, and the rupture force as a function of loading rate are calculated. The dependence of the kinetics and of the rupture force on molecule length is also analyzed.
Resumo:
An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purines, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role in the origin of metabolism or the origin of life.
Resumo:
Experimental information on the structure and dynamics of molten globules gives estimates for the energy landscape's characteristics for folding highly helical proteins, when supplemented by a theory of the helix-coil transition in collapsed heteropolymers. A law of corresponding states relating simulations on small lattice models to real proteins possessing many more degrees of freedom results. This correspondence reveals parallels between "minimalist" lattice results and recent experimental results for the degree of native character of the folding transition state and molten globule and also pinpoints the needs of further experiments.
Resumo:
Fourier transform-infrared/statistics models demonstrate that the malignant transformation of morphologically normal human ovarian and breast tissues involves the creation of a high degree of structural modification (disorder) in DNA, before restoration of order in distant metastases. Order–disorder transitions were revealed by methods including principal components analysis of infrared spectra in which DNA samples were represented by points in two-dimensional space. Differences between the geometric sizes of clusters of points and between their locations revealed the magnitude of the order–disorder transitions. Infrared spectra provided evidence for the types of structural changes involved. Normal ovarian DNAs formed a tight cluster comparable to that of normal human blood leukocytes. The DNAs of ovarian primary carcinomas, including those that had given rise to metastases, had a high degree of disorder, whereas the DNAs of distant metastases from ovarian carcinomas were relatively ordered. However, the spectra of the metastases were more diverse than those of normal ovarian DNAs in regions assigned to base vibrations, implying increased genetic changes. DNAs of normal female breasts were substantially disordered (e.g., compared with the human blood leukocytes) as were those of the primary carcinomas, whether or not they had metastasized. The DNAs of distant breast cancer metastases were relatively ordered. These findings evoke a unified theory of carcinogenesis in which the creation of disorder in the DNA structure is an obligatory process followed by the selection of ordered, mutated DNA forms that ultimately give rise to metastases.
Resumo:
We discuss recent developments in our understanding of matter, broadly construed, and their implications for contemporary research in fundamental physics.
Resumo:
We outline here a proof that a certain rational function Cn(q, t), which has come to be known as the “q, t-Catalan,” is in fact a polynomial with positive integer coefficients. This has been an open problem since 1994. Because Cn(q, t) evaluates to the Catalan number at t = q = 1, it has also been an open problem to find a pair of statistics a, b on the collection
Resumo:
We used [3H]thymidine to document the birth of neurons and their recruitment into the hippocampal complex (HC) of juvenile (4.5 months old) and adult blackcapped chickadees (Parus atricapillus) living in their natural surroundings. Birds received a single dose of [3H]thymidine in August and were recaptured and killed 6 weeks later, in early October. All brains were stained with Cresyl violet, a Nissl stain. The boundaries of the HC were defined by reference to the ventricular wall, the brain surface, or differences in neuronal packing density. The HC of juveniles was as large as or larger than that of adults and packing density of HC neurons was 31% higher in juveniles than in adults. Almost all of the 3H-labeled HC neurons were found in a 350-m-wide layer of tissue adjacent to the lateral ventricle. Within this layer the fraction of 3H-labeled neurons was 50% higher in juveniles than in adults. We conclude that the HC of juvenile chickadees recruits more neurons and has more neurons than that of adults. We speculate that juveniles encounter greater environmental novelty than adults and that the greater number of HC neurons found in juveniles allows them to learn more than adults. At a more general level, we suggest that (i) long-term learning alters HC neurons irreversibly; (ii) sustained hippocampal learning requires the periodic replacement of HC neurons; (iii) memories coded by hippocampal neurons are transferred elsewhere before the neurons are replaced.
Resumo:
The exon theory of genes proposes that the introns of protein-encoding nuclear genes are remnants of the DNA spacers between ancient minigenes. The discovery of an intron at a predicted position in the triose-phosphate isomerase (EC 5.3.1.1) gene of Culex mosquitoes has been hailed as an evidential pillar of the theory. We have found that that intron is also present in Aedes mosquitoes, which are closely related to Culex, but not in the phylogenetically more distant Anopheles, nor in the fly Calliphora vicina, nor in the moth Spodoptera littoralis. The presence of this intron in Culex and Aedes is parsimoniously explained as the result of an insertion in a recent common ancestor of these two species rather than as the remnant of an ancient intron. The absence of the intron in 19 species of very diverse organisms requires at least 10 independent evolutionary losses in order to be consistent with the exon theory.
Resumo:
It is a familiar experience that we tend to close our eyes or divert our gaze when concentrating attention on cognitively demanding tasks. We report on the brain activity correlates of directing attention away from potentially competing visual processing and toward processing in another sensory modality. Results are reported from a series of positron-emission tomography studies of the human brain engaged in somatosensory tasks, in both "eyes open" and "eyes closed" conditions. During these tasks, there was a significant decrease in the regional cerebral blood flow in the visual cortex, which occurred irrespective of whether subjects had to close their eyes or were instructed to keep their eyes open. These task-related deactivations of the association areas belonging to the nonrelevant sensory modality were interpreted as being due to decreased metabolic activity. Previous research has clearly demonstrated selective activation of cortical regions involved in attention-demanding modality-specific tasks; however, the other side of this story appears to be one of selective deactivation of unattended areas.