6 resultados para theory and modeling
em National Center for Biotechnology Information - NCBI
Resumo:
We examine decision making in two-person extensive form game trees using nine treatments that vary matching protocol, payoffs, and payoff information. Our objective is to establish replicable principles of cooperative versus noncooperative behavior that involve the use of signaling, reciprocity, and backward induction strategies, depending on the availability of dominated direct punishing strategies and the probability of repeated interaction with the same partner. Contrary to the predictions of game theory, we find substantial support for cooperation under complete information even in various single-play treatments.
Resumo:
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
Resumo:
We describe the use of singular value decomposition in transforming genome-wide expression data from genes × arrays space to reduced diagonalized “eigengenes” × “eigenarrays” space, where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent noise or experimental artifacts enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators, or with measured samples, in which these regulators are overactive or underactive, respectively.
Resumo:
Kinetic analysis and molecular modeling have been used to map the ribonucleolytic center of angiogenin (Ang). Pyrimidine nucleotides were found to interact very weakly with Ang, consistent with the inaccessible B1 pyrimidine binding site revealed by x-ray crystallography. Ang also lacks an effective phosphate binding site on the 5' side of B1. Although the B2 site that preferentially binds purines on the 3' side of B1 is also weak, its associated phosphate subsites make substantial contributions: both 3',5'-ADP and 5'-ADP have Ki values 6-fold lower than for 5'-AMP, and adding a 3'-phosphate to the substrate CpA increases Kcat/Km by 9-fold. Thus Ang has a functional P2 site on the 3' side of B2 and a site for a second phosphate on the 5' side of B2. Modeling of an Ang-d(ApTpApA) complex suggested that Arg-5 forms part of the P2 site and that a 2'-phosphate might bind more tightly than a 3'-phosphate. Both predictions were confirmed kinetically. The subsite map obtained by this combined approach indicated that 5'-diphosphoadenosine 2'-phosphate might be a more potent inhibitor than any of the nucleotides tested thus far. Indeed, its Ki value of 150 microM is 50-fold lower than that for the best nucleotide previously reported and 400-fold lower than the Km for the best dinucleotide substrate. This compound may serve as a suitable starting point for the eventual design of tight-binding inhibitors of Ang as antiangiogenic agents for human therapy.
Resumo:
For almost a century, events relating to the evolutionary origin of endosperm, a unique embryo-nourishing tissue that is essential to the reproductive process in flowering plants, have remained a mystery. Integration of recent advances in phylogenetic reconstruction, comparative reproductive biology, and genetic theory can be used to elucidate the evolutionary events and forces associated with the establishment of endosperm. Endosperm is shown to be derived from one of two embryos formed during a rudimentary process of "double fertilization" that evolved in the ancestors of angiosperms. Acquisition of embryo-nourishing behavior (with accompanying loss of individual fitness) by this supernumerary fertilization product was dependent upon compensatory gains in the inclusive fitness of related embryos. The result of the loss of individual fitness by one of the two original products of double fertilization was the establishment of endosperm, a highly modified embryo/organism that reproduces cryptically through behavior that enhances the fitness of its associated embryo within a seed. Finally, although triploid endosperm remains a synapomorphy of angiosperms, inclusive fitness analysis demonstrates that the embryo-nourishing properties of endosperm initially evolved in a diploid condition.