119 resultados para the crystal growth of nitrogenase component 1.
em National Center for Biotechnology Information - NCBI
Resumo:
The crystal and molecular structure of an RNA duplex corresponding to the high affinity Rev protein binding element (RBE) has been determined at 2.1-Å resolution. Four unique duplexes are present in the crystal, comprising two structural variants. In each duplex, the RNA double helix consists of an annealed 12-mer and 14-mer that form an asymmetric internal loop consisting of G-G and G-A noncanonical base pairs and a flipped-out uridine. The 12-mer strand has an A-form conformation, whereas the 14-mer strand is distorted to accommodate the bulges and noncanonical base pairing. In contrast to the NMR model of the unbound RBE, an asymmetric G-G pair with N2-N7 and N1-O6 hydrogen bonding, is formed in each helix. The G-A base pairing agrees with the NMR structure in one structural variant, but forms a novel water-mediated pair in the other. A backbone flip and reorientation of the G-G base pair is required to assume the RBE conformation present in the NMR model of the complex between the RBE and the Rev peptide.
Resumo:
Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different.
Resumo:
Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand binding. Residues in domain 1 important for ligand binding reside in the C-D loop, which projects markedly from one face of the molecule near the contact between domains 1 and 2. A cyclic peptide that mimics this loop inhibits binding of alpha 4 beta 1 integrin-bearing cells to VCAM-1. These data demonstrate how crystallographic structural information can be used to design a small molecule inhibitor of biological function.
Resumo:
Here we report the crystal structure at ≈4-Å resolution of a selectively proteolyzed bovine fibrinogen. This key component in hemostasis is an elongated 340-kDa glycoprotein in the plasma that upon activation by thrombin self-assembles to form the fibrin clot. The crystals are unusual because they are made up of end-to-end bonded molecules that form flexible filaments. We have visualized the entire coiled-coil region of the molecule, which has a planar sigmoidal shape. The primary polymerization receptor pockets at the ends of the molecule face the same way throughout the end-to-end bonded filaments, and based on this conformation, we have developed an improved model of the two-stranded protofibril that is the basic building block in fibrin. Near the middle of the coiled-coil region, the plasmin-sensitive segment is a hinge about which the molecule adopts different conformations. This segment also includes the boundary between the three- and four-stranded portions of the coiled coil, indicating the location on the backbone that anchors the extended flexible Aα arm. We suggest that a flexible branch point in the molecule may help accommodate variability in the structure of the fibrin clot.
Resumo:
Synthetic C peptides, corresponding to the C helix of the HIV type 1 (HIV-1) gp41 envelope protein, are potent inhibitors of HIV-1 membrane fusion. One such peptide is in clinical trials. The crystal structure of the gp41 core, in its proposed fusion-active conformation, is a trimer of helical hairpins in which three C helices pack against a central coiled coil. Each C helix shows especially prominent contacts with one of three symmetry-related, hydrophobic cavities on the surface of the coiled coil. We show that the inhibitory activity of the C peptide C34 depends on its ability to bind to this coiled-coil cavity. Moreover, examining a series of C34 peptide variants with modified cavity-binding residues, we find a linear relationship between the logarithm of the inhibitory potency and the stability of the corresponding helical-hairpin complexes. Our results provide strong evidence that this coiled-coil cavity is a good drug target and clarify the mechanism of C peptide inhibition. They also suggest simple, quantitative assays for the identification and evaluation of analogous inhibitors of HIV-1 entry.
Resumo:
Sm proteins form the core of small nuclear ribonucleoprotein particles (snRNPs), making them key components of several mRNA-processing assemblies, including the spliceosome. We report the 1.75-Å crystal structure of SmAP, an Sm-like archaeal protein that forms a heptameric ring perforated by a cationic pore. In addition to providing direct evidence for such an assembly in eukaryotic snRNPs, this structure (i) shows that SmAP homodimers are structurally similar to human Sm heterodimers, (ii) supports a gene duplication model of Sm protein evolution, and (iii) offers a model of SmAP bound to single-stranded RNA (ssRNA) that explains Sm binding-site specificity. The pronounced electrostatic asymmetry of the SmAP surface imparts directionality to putative SmAP–RNA interactions.
Resumo:
The immunity protein of colicin E7 (ImmE7) can bind specifically to the DNase-type colicin E7 and inhibit its bactericidal activity. Here we report the 1.8-angstrom crystal structure of the ImmE7 protein. This is the first x-ray structure determined in the superfamily of colicin immunity proteins. The ImmE7 protein consists of four antiparallel alpha-helices, folded in a topology similar to the architecture of a four-helix bundle structure. A region rich in acidic residues is identified. This negatively charged area has the greatest variability within the family of DNase-type immunity proteins; thus, it seems likely that this area is involved in specific binding to colicin. Based on structural, genetic, and kinetic data, we suggest that all the DNase-type immunity proteins, as well as colicins, share a "homologous-structural framework" and that specific interaction between a colicin and its cognate immunity protein relies upon how well these two proteins' charged residues match on the interaction surface, thus leading to specific immunity of the colicin.
Resumo:
In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.
Resumo:
Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-Å resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Ω loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates.
Resumo:
Type I interferons (IFNs) are helical cytokines that have diverse biological activities despite the fact that they appear to interact with the same receptor system. To achieve a better understanding of the structural basis for the different activities of α and β IFNs, we have determined the crystal structure of glycosylated human IFN-β at 2.2-Å resolution by molecular replacement. The molecule adopts a fold similar to that of the previously determined structures of murine IFN-β and human IFN-α2b but displays several distinct structural features. Like human IFN-α2b, human IFN-β contains a zinc-binding site at the interface of the two molecules in the asymmetric unit, raising the question of functional relevance for IFN-β dimers. However, unlike the human IFN-α2b dimer, in which homologous surfaces form the interface, human IFN-β dimerizes with contact surfaces from opposite sides of the molecule. The relevance of the structure to the effects of point mutations in IFN-β at specific exposed residues is discussed. A potential role of ligand–ligand interactions in the conformational assembly of IFN receptor components is discussed.
Resumo:
The yeast nonchromosomal gene [URE3] is due to a prion form of the nitrogen regulatory protein Ure2p. It is a negative regulator of nitrogen catabolism and acts by inhibiting the transcription factor Gln3p. Ure2p residues 180 are necessary for prion generation and propagation. The C-terminal fragment retains nitrogen regulatory activity, albeit somewhat less efficiently than the full-length protein, and it also lowers the frequency of prion generation. The crystal structure of this C-terminal fragment, Ure2p(97–354), at 2.3 Å resolution is described here. It adopts the same fold as the glutathione S-transferase superfamily, consistent with their sequence similarity. However, Ure2p(97–354) lacks a properly positioned catalytic residue that is required for S-transferase activity. Residues within this regulatory fragment that have been indicated by mutational studies to influence prion generation have been mapped onto the three-dimensional structure, and possible implications for prion activity are discussed.
Resumo:
In studies using subtraction cloning to screen for alterations in mRNA expression in skeletal muscle from humans with Type 2 diabetes mellitus and control subjects, one of the most prominent differences was in the mRNA for elongation factor (EF)-1. With Northern blot analysis, EF-1 expression was enhanced by 2- to 6-fold in both Types 1 and 2 human diabetics. In contrast, no changes in expression of EF-1 or -γ were noted. We observed similar results in animal models of Type 1 diabetes. EF-1 expression, but not EF-1 or -γ expression, was also enhanced in streptozotocin-induced diabetic rats, and this effect was reversed by insulin treatment. An increased level of EF-1 mRNA was also observed in nonobese diabetic mice. This unbalanced regulation of the expression of the different subunits of EF-1 may contribute to alterations not only in protein synthesis but also in other cellular events observed in the diabetic state.
Resumo:
RNA-RNA interactions govern a number of biological processes. Several RNAs, including natural sense and antisense RNAs, interact by means of a two-step mechanism: recognition is mediated by a loop-loop complex, which is then stabilized by formation of an extended intermolecular duplex. It was proposed that the same mechanism holds for dimerization of the genomic RNA of human immunodeficiency virus type 1 (HIV-1), an event thought to control crucial steps of HIV-1 replication. However, whereas interaction between the partially self-complementary loop of the dimerization initiation site (DIS) of each monomer is well established, formation of the extended duplex remained speculative. Here we first show that in vitro dimerization of HIV-1 RNA is a specific process, not resulting from simple annealing of denatured molecules. Next we used mutants of the DIS to test the formation of the extended duplex. Four pairs of transcomplementary mutants were designed in such a way that all pairs can form the loop-loop "kissing" complex, but only two of them can potentially form the extended duplex. All pairs of mutants form heterodimers whose thermal stability, dissociation constant, and dynamics were analyzed. Taken together, our results indicate that, in contrast with the interactions between natural sense and antisense RNAs, no extended duplex is formed during dimerization of HIV-1 RNA. We also showed that 55-mer sense RNAs containing the DIS are able to interfere with the preformed HIV-1 RNA dimer.
Resumo:
Domain III of Pseudomonas aeruginosa exotoxin A catalyses the transfer of ADP-ribose from NAD to a modified histidine residue of elongation factor 2 in eukaryotic cells, thus inactivating elongation factor 2. This domain III is inactive in the intact toxin but is active in the isolated form. We report here the 2.5-A crystal structure of this isolated domain crystallized in the presence of NAD and compare it with the corresponding structure in the intact Pseudomonas aeruginosa exotoxin A. We observe a significant conformational difference in the active site region from Arg-458 to Asp-463. Contacts with part of domain II in the intact toxin prevent the adoption of the isolated domain conformation and provide a structural explanation for the observed inactivity. Additional electron density in the active site region corresponds to separate AMP and nicotinamide and indicates that the NAD has been hydrolyzed. The structure has been compared with the catalytic domain of the diphtheria toxin, which was crystallized with ApUp.
Resumo:
Stromal cell-derived factor-1 (SDF-1 ) is a member of the chemokine superfamily and functions as a growth factor and chemoattractant through activation of CXCR4/LESTR/Fusin, a G protein-coupled receptor. This receptor also functions as a coreceptor for T-tropic syncytium-inducing strains of HIV-1. SDF-1 antagonizes infectivity of these strains by competing with gp120 for binding to the receptor. The crystal structure of a variant SDF-1 ([N33A]SDF-1 ) prepared by total chemical synthesis has been refined to 2.2-Å resolution. Although SDF-1 adopts a typical chemokine β-β-β-α topology, the packing of the α-helix against the β-sheet is strikingly different. Comparison of SDF-1 with other chemokine structures confirms the hypothesis that SDF-1 may be either an ancestral protein from which all other chemokines evolved or the chemokine that is the least divergent from a primordial chemokine. The structure of SDF-1 reveals a positively charged surface ideal for binding to the negatively charged extracellular loops of the CXCR4 HIV-1 coreceptor. This ionic complementarity is likely to promote the interaction of the mobile N-terminal segment of SDF-1 with interhelical sites of the receptor, resulting in a biological response.