6 resultados para tetranucleotide

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic analysis of limiting quantities of genomic DNA play an important role in DNA forensics, paleoarcheology, genetic disease diagnosis, genetic linkage analysis, and genetic diversity studies. We have tested the ability of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to amplify picogram quantities of human genomic DNA for the purpose of increasing the amount of template for genotyping with microsatellite repeat markers. DNA was uniformly amplified at a large number of typable loci throughout the human genome with starting template DNAs from as little as 15 pg to as much as 400 ng. A much greater-fold enrichment was seen for the smaller genomic DOP-PCRs. All markers tested were amplified from starting genomic DNAs in the range of 0.6–40 ng with amplifications of 200- to 600-fold. The DOP-PCR-amplified genomic DNA was an excellent and reliable template for genotyping with microsatellites, which give distinct bands with no increase in stutter artifact on di-, tri-, and tetranucleotide repeats. There appears to be equal amplification of genomic DNA from 55 of 55 tested discrete microsatellites implying near complete coverage of the human genome. Thus, DOP-PCR appears to allow unbiased, hundreds-fold whole genome amplification of human genomic DNA for genotypic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genomic similarities and contrasts are investigated in a collection of 23 bacteriophages, including phages with temperate, lytic, and parasitic life histories, with varied sequence organizations and with different hosts and with different morphologies. Comparisons use relative abundances of di-, tri-, and tetranucleotides from entire genomes. We highlight several specific findings. (i) As previously shown for cellular genomes, each viral genome has a distinctive signature of short oligonucleotide abundances that pervade the entire genome and distinguish it from other genomes. (ii) The enteric temperate double-stranded (ds) phages, like enterobacteria, exhibit significantly high relative abundances of GpC = GC and significantly low values of TA, but no such extremes exist in ds lytic phages. (iii) The tetranucleotide CTAG is of statistically low relative abundance in most phages. (iv) The DAM methylase site GATC is of statistically low relative abundance in most phages, but not in P1. This difference may relate to controls on replication (e.g., actions of the host SeqA gene product) and to MutH cleavage potential of the Escherichia coli DAM mismatch repair system. (v) The enteric temperate dsDNA phages form a coherent group: they are relatively close to each other and to their bacteria] hosts in average differences of dinucleotide relative abundance values. By contrast, the lytic dsDNA phages do not form a coherent group. This difference may come about because the temperate phages acquire more sequence characteristics of the host because they use the host replication and repair machinery, whereas the analyzed lytic phages are replicated by their own machinery. (vi) The nonenteric temperate phages with mycoplasmal and mycobacterial hosts are relatively close to their respective hosts and relatively distant from any of the enteric hosts and from the other phages. (vii) The single-stranded RNA phages have dinucleotide relative abundance values closest to those for random sequences, presumably attributable to the mutation rates of RNA phages being much greater than those of DNA phages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymorphic C-->T transition located on the human Y chromosome was found by the systematic comparative sequencing of Y-specific sequence-tagged sites by denaturing high-performance liquid chromatography. The results of genotyping representative global indigenous populations indicate that the locus is polymorphic exclusively within the Western Hemisphere. The pre-Columbian T allele occurs at > 90% frequency within the native South and Central American populations examined, while its occurrence in North America is approximately 50%. Concomitant genotyping at the polymorphic tetranucleotide microsatellite DYS19 locus revealed that the C-->T mutation displayed significant linkage disequilibrium with the 186-bp allele. The data suggest a single origin of linguistically diverse native Americans with subsequent haplotype differentiation within radiating indigenous populations as well as post-Columbian European and African gene flow. The mutation may have originated either in North America at a very early time during the expansion or before it, in the ancestral population(s) from which all Americans may have originated. The analysis of linkage of the DYS199 and the DYS19 tetranucleotide loci suggests that the C-->T mutation may have occurred around 30,000 years ago. We estimate the nucleotide diversity over 4.2 kb of the nonrecombining portion of the Y chromosome to be 0.00014. compared to autosomes, the majority of variation is due to the smaller effective population size of the Y chromosome rather than selective sweeps. There begins to emerge a pattern of pronounced geographical localization of Y-specific nucleotide substitution polymorphisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.