2 resultados para testes de vigor

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess whether heterozygosity of the donor cell genome was a general parameter crucial for long-term survival of cloned animals, we tested the ability of embryonic stem (ES) cells with either an inbred or F1 genetic background to generate cloned mice by nuclear transfer. Most clones derived from five F1 ES cell lines survived to adulthood. In contrast, clones from three inbred ES cell lines invariably died shortly after birth due to respiratory failure. Comparison of mice derived from nuclear cloning, in which a complete blastocyst is derived from a single ES cell, and tetraploid blastocyst complementation, in which only the inner cell mass is formed from a few injected ES cells, allows us to determine which phenotypes depend on the technique or on the characteristics of the ES cell line. Neonatal lethality also has been reported in mice entirely derived from inbred ES cells that had been injected into tetraploid blastocysts (ES cell-tetraploids). Like inbred clones, ES cell-tetraploid pups derived from inbred ES cell lines died shortly after delivery with signs of respiratory distress. In contrast, most ES cell-tetraploid neonates, derived from six F1 ES cell lines, developed into fertile adults. Cloned pups obtained from both inbred and F1 ES cell nuclei frequently displayed increased placental and birth weights whereas ES cell-tetraploid pups were of normal weight. The potency of F1 ES cells to generate live, fertile adults was not lost after either long-term in vitro culture or serial gene targeting events. We conclude that genetic heterozygosity is a crucial parameter for postnatal survival of mice that are entirely derived from ES cells by either nuclear cloning or tetraploid embryo complementation. In addition, our results demonstrate that tetraploid embryo complementation using F1 ES cells represents a simple, efficient procedure for deriving animals with complex genetic alterations without the need for a chimeric intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DGq is the alpha subunit of the heterotrimeric GTPase (G alpha), which couples rhodopsin to phospholipase C in Drosophila vision. We have uncovered three duplicated exons in dgq by scanning the GenBank data base for unrecognized coding sequences. These alternative exons encode sites involved in GTPase activity and G beta-binding, NorpA (phospholipase C)-binding, and rhodopsin-binding. We examined the in vivo splicing of dgq in adult flies and find that, in all but the male gonads, only two isoforms are expressed. One, dgqA, is the original visual isoform and is expressed in eyes, ocelli, brain, and male gonads. The other, dgqB, has the three novel exons and is widely expressed. Remarkably, all three nonvisual B exons are highly similar (82% identity at the amino acid level) to the Gq alpha family consensus, from Caenorhabditis elegans to human, but all three visual A exons are divergent (61% identity). Intriguingly, we have found a third isoform, dgqC, which is specifically and abundantly expressed in male gonads, and shares the divergent rhodopsin-binding exon of dgqA. We suggest that DGqC is a candidate for the light-signal transducer of a testes-autonomous photosensory clock. This proposal is supported by the finding that rhodopsin 2 and arrestin 1, two photoreceptor-cell-specific genes, are also expressed in male gonads.