3 resultados para technology integration in education

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a plant protoplast transformation method that provides transformants with a simple pattern of integration of a foreign gene. The approach is to deliver into plant protoplasts by direct gene transfer the Agrobacterium virulence genes virD1 and virD2 with or without virE2, together with a target plasmid containing a gene of interest flanked by Agrobacterium T-DNA border repeat sequences of 25 bp. We present evidence of T-DNA formation in maize protoplasts and its integration into the maize genome. The frequency of VirD1-VirD2-mediated integration events was about 20–35% of the total number of transformants. The addition of virE2 doubled the transformation efficiency. The method described here is of sufficient efficiency and simplicity to be useful for the production of transgenic plants with single-copy well-defined transgenic inserts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human visual system is able to effortlessly integrate local features to form our rich perception of patterns, despite the fact that visual information is discretely sampled by the retina and cortex. By using a novel perturbation technique, we show that the mechanisms by which features are integrated into coherent percepts are scale-invariant and nonlinear (phase and contrast polarity independent). They appear to operate by assigning position labels or “place tags” to each feature. Specifically, in the first series of experiments, we show that the positional tolerance of these place tags in foveal, and peripheral vision is about half the separation of the features, suggesting that the neural mechanisms that bind features into forms are quite robust to topographical jitter. In the second series of experiment, we asked how many stimulus samples are required for pattern identification by human and ideal observers. In human foveal vision, only about half the features are needed for reliable pattern interpolation. In this regard, human vision is quite efficient (ratio of ideal to real ≈ 0.75). Peripheral vision, on the other hand is rather inefficient, requiring more features, suggesting that the stimulus may be relatively underrepresented at the stage of feature integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotactic signaling in Escherichia coli involves transmission of both negative and positive signals. In order to examine mechanisms of signal processing, behavioral responses to dual inputs have been measured by using photoactivable "caged" compounds, computer video analysis, and chemoreceptor deletion mutants. Signaling from Tar and Tsr, two receptors that sense amino acids and pH, was studied. In a Tar deletion mutant the photoactivated release of protons, a Tsr repellent, and of serine, a Tsr attractant, in separate experiments at pH 7.0 resulted in tumbling (negative) or smooth-swimming (positive) responses in ca. 50 and 140 ms, respectively. Simultaneous photorelease of protons and serine resulted in a single tumbling or smooth-swimming response, depending on the relative amounts of the two effectors. In contrast, in wild-type E. coli, proton release at pH 7.0 resulted in a biphasic response that was attributed to Tsr-mediated tumbling followed by Tar-mediated smooth-swimming. In wild-type E. coli at more alkaline pH values the Tar-mediated signal was stronger than the Tsr signal, resulting in a strong smooth-swimming response preceded by a diminished tumbling response. These observations imply that (i) a single receptor time-averages the binding of different chemotactic ligands generating a single response; (ii) ligand binding to different receptors can result in a nonintegrated response with the tumbling response preceding the smooth-swimming response; (iii) however, chemotactic signals of different intensities derived from different receptors can also result in an apparently integrated response; and (iv) the different chemotactic responses to protons at neutral and alkaline pH may contribute to E. coli migration toward neutrality.