12 resultados para surface atomic structure
em National Center for Biotechnology Information - NCBI
Resumo:
Infection by HIV-1 involves the fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. The HIV-1 envelope glycoprotein that mediates fusion consists of the surface subunit gp120 and the transmembrane subunit gp41. gp120 directs virion attachment to the cell–surface receptors, and gp41 then promotes viral–cell membrane fusion. A soluble, α-helical, trimeric complex within gp41 composed of N-terminal and C-terminal extraviral segments has been proposed to represent the core of the fusion-active conformation of the HIV-1 envelope. A thermostable subdomain denoted N34(L6)C28 can be formed by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop region. Three-dimensional structure of N34(L6)C28 reveals that three molecules fold into a six-stranded helical bundle. Three N-terminal helices within the bundle form a central, parallel, trimeric coiled coil, whereas three C-terminal helices pack in the reverse direction into three hydrophobic grooves on the surface of the N-terminal trimer. This thermostable subdomain displays the salient features of the core structure of the isolated gp41 subunit and thus provides a possible target for therapeutics designed selectively to block HIV-1 entry.
Resumo:
The normal function of human intercellular adhesion molecule-1 (ICAM-1) is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 binds to leukocyte function-associated antigen (LFA-1) or macrophage-1 antigen (Mac-1). However, ICAM-1 is also used as a receptor by the major group of human rhinoviruses and is a catalyst for the subsequent viral uncoating during cell entry. The three-dimensional atomic structure of the two amino-terminal domains (D1 and D2) of ICAM-1 has been determined to 2.2-Å resolution and fitted into a cryoelectron microscopy reconstruction of a rhinovirus–ICAM-1 complex. Rhinovirus attachment is confined to the BC, CD, DE, and FG loops of the amino-terminal Ig-like domain (D1) at the end distal to the cellular membrane. The loops are considerably different in structure to those of human ICAM-2 or murine ICAM-1, which do not bind rhinoviruses. There are extensive charge interactions between ICAM-1 and human rhinoviruses, which are mostly conserved in both major and minor receptor groups of rhinoviruses. The interaction of ICAMs with LFA-1 is known to be mediated by a divalent cation bound to the insertion (I)-domain on the α chain of LFA-1 and the carboxyl group of a conserved glutamic acid residue on ICAMs. Domain D1 has been docked with the known structure of the I-domain. The resultant model is consistent with mutational data and provides a structural framework for the adhesion between these molecules.
Resumo:
X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding.
Resumo:
The recent determination of the myosin head atomic structure has led to a new model of muscle contraction, according to which mechanical torque is generated in the catalytic domain and amplified by the lever arm made of the regulatory domain [Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M. & Rayment, I. (1995) Biochemistry 34, 8960–8972]. A crucial aspect of this model is the ability of the regulatory domain to move independently of the catalytic domain. Saturation transfer–EPR measurements of mobility of these two domains in myosin filaments give strong support for this notion. The catalytic domain of the myosin head was labeled at Cys-707 with indane dione spin label; the regulatory domain was labeled at the single cysteine residue of the essential light chain and exchanged into myosin. The mobility of the regulatory domain in myosin filaments was characterized by an effective rotational correlation time (τR) between 24 and 48 μs. In contrast, the mobility of the catalytic domain was found to be τR = 5–9 μs. This difference in mobility between the two domains existed only in the filament form of myosin. In the monomeric form, or when bound to actin, the mobility of the two domains in myosin was indistinguishable, with τR = 1–4 μs and >1,000 μs, respectively. Therefore, the observed difference in filaments cannot be ascribed to differences in local conformations of the spin-labeled sites. The most straightforward interpretation suggests a flexible hinge between the two domains, which would have to stiffen before force could be generated.
Resumo:
Photosynthetic organisms fuel their metabolism with light energy and have developed for this purpose an efficient apparatus for harvesting sunlight. The atomic structure of the apparatus, as it evolved in purple bacteria, has been constructed through a combination of x-ray crystallography, electron microscopy, and modeling. The detailed structure and overall architecture reveals a hierarchical aggregate of pigments that utilizes, as shown through femtosecond spectroscopy and quantum physics, elegant and efficient mechanisms for primary light absorption and transfer of electronic excitation toward the photosynthetic reaction center.
Resumo:
Double-stranded RNA deaminase I (ADAR1) contains the Z-DNA binding domain Zα. Here we report the solution structure of free Zα and map the interaction surface with Z-DNA, confirming roles previously assigned to residues by mutagenesis. Comparison with the crystal structure of the (Zα)2/Z-DNA complex shows that most Z-DNA contacting residues in free Zα are prepositioned to bind Z-DNA, thus minimizing the entropic cost of binding. Comparison with homologous (α+β)helix–turn–helix/B-DNA complexes suggests that binding of Zα to B-DNA is disfavored by steric hindrance, but does not eliminate the possibility that related domains may bind to both B- and Z-DNA.
Resumo:
The “3-color, 46-bead” model of a folding polypeptide is the vehicle for adapting to proteins a mode of analysis used heretofore for atomic clusters, to relate the topography of the potential surface to the dynamics that lead to formation of selected structures. The analysis is based on sequences of stationary points—successive minima, joined by saddles—that rise monotonically in energy from basin bottoms. Like structure-seeking clusters, the potential surface of the model studied here is staircase-like, rather than sawtooth-like, with highly collective motions required for passage from one minimum to the next. The surface has several deep basins whose minima correspond to very similar structures, but which are separated by high energy barriers.
Resumo:
We have combined high-resolution atomic force microscopy (AFM) imaging and force spectroscopy to gain insight into the interaction forces between the individual protomers of the hexagonally packed intermediate (HPI) layer of Deinococcus radiodurans. After imaging the HPI layer, the AFM stylus was attached to individual protomers by enforced stylus-sample contact to allow force spectroscopy experiments. Imaging of the HPI layer after recording force-extension curves allowed adhesion forces to be correlated with structural alterations. By using this approach, individual protomers of the HPI layer were found to be removed at pulling forces of ≈300 pN. Furthermore, it was possible to sequentially unzip entire bacterial pores formed by six HPI protomers. The combination of high-resolution AFM imaging of individual proteins with the determination of their intramolecular forces is a method of studying the mechanical stability of supramolecular structures at the level of single molecules.
Resumo:
The atomic force microscope (AFM) was used to continuously follow height changes of individual protein molecules exposed to physiological stimuli. A AFM tip was coated with ROMK1 (a cloned renal epithelial potassium channel known to be highly pH sensitive) and lowered onto atomically flat mica surface until the protein was sandwiched between AFM tip and mica. Because the AFM tip was an integral part of a highly flexible cantilever, any structural alterations of the sandwiched molecule were transmitted to the cantilever. This resulted in a distortion of the cantilever that was monitored by means of a laser beam. With this system it was possible to resolve vertical height changes in the ROMK1 protein of ≥0.2 nm (approximately 5% of the molecule’s height) with a time resolution of ≥1 msec. When bathed in electrolyte solution that contained the catalytic subunit of protein kinase A and 0.1 mM ATP (conditions that activate the native ion channel), we found stochastically occurring height fluctuations in the ROMK1 molecule. These changes in height were pH-dependent, being greatest at pH 7.6, and lowering the pH (either by titration or by the application of CO2) reduced their magnitude. The data show that overall changes in shape of proteins occur stochastically and increase in size and frequency when the proteins are active. This AFM “molecular-sandwich” technique, called MOST, measures structural activity of proteins in real time and could prove useful for studies on the relationship between structure and function of proteins at the molecular level.
Resumo:
The immunity protein of colicin E7 (ImmE7) can bind specifically to the DNase-type colicin E7 and inhibit its bactericidal activity. Here we report the 1.8-angstrom crystal structure of the ImmE7 protein. This is the first x-ray structure determined in the superfamily of colicin immunity proteins. The ImmE7 protein consists of four antiparallel alpha-helices, folded in a topology similar to the architecture of a four-helix bundle structure. A region rich in acidic residues is identified. This negatively charged area has the greatest variability within the family of DNase-type immunity proteins; thus, it seems likely that this area is involved in specific binding to colicin. Based on structural, genetic, and kinetic data, we suggest that all the DNase-type immunity proteins, as well as colicins, share a "homologous-structural framework" and that specific interaction between a colicin and its cognate immunity protein relies upon how well these two proteins' charged residues match on the interaction surface, thus leading to specific immunity of the colicin.
Resumo:
Leaf surfaces provide the ecologically relevant landscapes to those organisms that encounter or colonize the leaf surface. Leaf surface topography directly affects microhabitat availability for colonizing microbes, microhabitat quality and acceptability for insects, and the efficacy of agricultural spray applications. Prior detailed mechanistic studies that examined particular fungi-plant and pollinator-plant interactions have demonstrated the importance of plant surface topography or roughness in determining the outcome of the interactions. Until now, however, it has not been possible to measure accurately the topography--i.e., the three-dimensional structure--of such leaf surfaces or to record precise changes in patterns of leaf surface elevation over time. Using contact mode atomic force microscopy, we measured three-dimensional coordinates of upper leaf surfaces of Vaccinium macrocarpon (cranberry), a perennial plant, on leaves of two age classes. We then produced topographic maps of these leaf surfaces, which revealed striking differences between age classes of leaves: old leaves have much rougher surfaces than those of young leaves. Atomic force microscope measurements were analyzed by lag (1) autocorrelation estimates of leaf surfaces by age class. We suggest that the changes in topography result from removal of epicuticular lipids and that the changes in leaf surface topography influence phylloplane ecology. Visualizing and mapping leaf surfaces permit detailed investigations into leaf surface-mediated phenomena, improving our understanding of phylloplane interactions.
Resumo:
Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.