2 resultados para suppression strategies

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying the immunologic and virologic consequences of discontinuing antiretroviral therapy in HIV-infected patients is of major importance in developing long-term treatment strategies for patients with HIV-1 infection. We designed a trial to characterize these parameters after interruption of highly active antiretroviral therapy (HAART) in patients who had maintained prolonged viral suppression on antiretroviral drugs. Eighteen patients with CD4+ T cell counts ≥ 350 cells/μl and viral load below the limits of detection for ≥1 year while on HAART were enrolled prospectively in a trial in which HAART was discontinued. Twelve of these patients had received prior IL-2 therapy and had low frequencies of resting, latently infected CD4 cells. Viral load relapse to >50 copies/ml occurred in all 18 patients independent of prior IL-2 treatment, beginning most commonly during weeks 2–3 after cessation of HAART. The mean relapse rate constant was 0.45 (0.20 log10 copies) day−1, which was very similar to the mean viral clearance rate constant after drug resumption of 0.35 (0.15 log10 copies) day−1 (P = 0.28). One patient experienced a relapse delay to week 7. All patients except one experienced a relapse burden to >5,000 RNA copies/ml. Ex vivo labeling with BrdUrd showed that CD4 and CD8 cell turnover increased after withdrawal of HAART and correlated with viral load whereas lymphocyte turnover decreased after reinitiation of drug treatment. Virologic relapse occurs rapidly in patients who discontinue suppressive drug therapy, even in patients with a markedly diminished pool of resting, latently infected CD4+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specific antagonists of central dopaminergic receptors constitute the major class of antipsychotic drugs (APD). Two principal effects of APD are used as criteria for the pre-clinical screening of their antipsychotic action: (i) inhibition of basal and depolarization-induced activity of mesolimbic dopaminergic neurons; (ii) antagonism of the locomotor effects of dopaminergic agonists. Given that glucocorticoid hormones in animals increase dopamine release and dopamine-mediated behaviors and that high levels of glucocorticoids can induce psychotic symptoms in humans, these experiments examined whether inhibition of endogenous glucocorticoids might have APD-like effects on mesolimbic dopaminergic transmission in rats. It is shown that suppression of glucocorticoid secretion by adrenalectomy profoundly decreased (by greater than 50%): (i) basal dopaminergic release and the release of dopamine induced by a depolarizing stimulus such as morphine (2 mg/kg, s.c.), as measured in the nucleus accumbens of freely moving animals by microdialysis; (ii) the locomotor activity induced by the direct dopaminergic agonist apomorphine. The effects of adrenalectomy were glucocorticoid specific given that they were reversed by the administration of glucocorticoids at doses within the physiological range. Despite its profound diminution of dopaminergic neurotransmission, adrenalectomy neither modified the number of mesencephalic dopaminergic neurons nor induced gliosis in the mesencephalon or in the nucleus accumbens, as shown by tyrosine hydroxylase and glial fibrillary acidic protein immunostaining. In conclusion, these findings suggest that blockade of central effects of glucocorticoids might open new therapeutic strategies of behavioral disturbances.