8 resultados para sums of squares
em National Center for Biotechnology Information - NCBI
Resumo:
In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.
Resumo:
Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.
Resumo:
We argue that given even an infinitely long data sequence, it is impossible (with any test statistic) to distinguish perfectly between linear and nonlinear processes (including slightly noisy chaotic processes). Our approach is to consider the set of moving-average (linear) processes and study its closure under a suitable metric. We give the precise characterization of this closure, which is unexpectedly large, containing nonergodic processes, which are Poisson sums of independent and identically distributed copies of a stationary process. Proofs of these results will appear elsewhere.
Resumo:
In three experiments, electric brain waves of 19 subjects were recorded under several different experimental conditions for two purposes. One was to test how well we could recognize which sentence, from a set of 24 or 48 sentences, was being processed in the cortex. The other was to study the invariance of brain waves between subjects. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A least-squares criterion of fit between prototypes and test samples was used for classification. In all three experiments, averaging over subjects improved the recognition rates. The most significant finding was the following. When brain waves were averaged separately for two nonoverlapping groups of subjects, one for prototypes and the other for test samples, we were able to recognize correctly 90% of the brain waves generated by 48 different sentences about European geography.
Resumo:
In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A least-squares criterion of fit between prototypes and test samples was used for classification. The most significant results were these. By averaging over different subjects, as well as trials, we created prototypes from brain waves evoked by simple visual images and test samples from brain waves evoked by auditory or visual words naming the visual images. We correctly recognized from 60% to 75% of the test-sample brain waves. The general conclusion is that simple shapes such as circles and single-color displays generate brain waves surprisingly similar to those generated by their verbal names. These results, taken together with extensive psychological studies of auditory and visual memory, strongly support the solution proposed for visual shapes, by Bishop Berkeley and David Hume in the 18th century, to the long-standing problem of how the mind represents simple abstract ideas.
Resumo:
Electrical and magnetic brain waves of seven subjects under three experimental conditions were recorded for the purpose of recognizing which one of seven words was processed. The analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. The filters used were optimal predictive filters, selected for each subject and condition. Recognition rates, based on a least-squares criterion, varied widely, but all but one of 24 were significantly different from chance. The two best were above 90%. These results show that brain waves carry substantial information about the word being processed under experimental conditions of conscious awareness.
Resumo:
Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies.
Resumo:
Electrical and magnetic brain waves of two subjects were recorded for the purpose of recognizing which one of 12 sentences or seven words auditorily presented was processed. The analysis consisted of averaging over trials to create prototypes and test samples, to each of which a Fourier transform was applied, followed by filtering and an inverse transformation to the time domain. The filters used were optimal predictive filters, selected for each subject. A still further improvement was obtained by taking differences between recordings of two electrodes to obtain bipolar pairs that then were used for the same analysis. Recognition rates, based on a least-squares criterion, varied, but the best were above 90%. The first words of prototypes of sentences also were cut and pasted to test, at least partially, the invariance of a word’s brain wave in different sentence contexts. The best result was above 80% correct recognition. Test samples made up only of individual trials also were analyzed. The best result was 134 correct of 288 (47%), which is promising, given that the expected recognition number by chance is just 24 (or 8.3%). The work reported in this paper extends our earlier work on brain-wave recognition of words only. The recognition rates reported here further strengthen the case that recordings of electric brain waves of words or sentences, together with extensive mathematical and statistical analysis, can be the basis of new developments in our understanding of brain processing of language.