2 resultados para sulforaphane

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10–100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at −50°C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect against the risk of cancer as effectively as much larger quantities of mature vegetables of the same variety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detoxication (phase 2) enzymes, such as glutathione S-transferases (GSTs), NAD(P)H:(quinone-acceptor) oxidoreductase (QR), and UDP-glucuronsyltransferase, are induced in animal cells exposed to a variety of electrophilic compounds and phenolic antioxidants. Induction protects against the toxic and neoplastic effects of carcinogens and is mediated by activation of upstream electrophile-responsive/antioxidant-responsive elements (EpRE/ARE). The mechanism of activation of these enhancers was analyzed by transient gene expression of growth hormone reporter constructs containing a 41-bp region derived from the mouse GST Ya gene 5'-upstream region that contains the EpRE/ARE element and of constructs in which this element was replaced with either one or two consensus phorbol 12-tetradecanoate 13-acetate (TPA)-responsive elements (TREs). When these three constructs were compared in Hep G2 (human) and Hepa 1c1c7 (murine) hepatoma cells, the wild-type sequence was highly activated by diverse inducers, including tert-butylhydroquinone, Michael reaction acceptors, 1,2-dithiole-3-thione, sulforaphane,2,3-dimercapto-1-propanol, HgCl2, sodium arsenite, and phenylarsine oxide. In contrast, constructs with consensus TRE sites were not induced significantly. TPA in combination with these compounds led to additive or synergistic inductions of the EpRE/ARE construct, but induction of the TRE construct was similar to that induced by TPA alone. Transfection of the EpRE/ARE reporter construct into F9 cells, which lack endogenous TRE-binding proteins, produced large inductions by the same compounds, which also induced QR activity in these cells. We conclude that activation of the EpRE/ARE by electrophile and antioxidant inducers is mediated by EpRE/ARE-specific proteins.