32 resultados para studies in human society

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type IV collagenases/gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9 play a variety of important roles in both physiological and pathological processes and are regulated by various growth factors, including transforming growth factor-β1 (TGF-β1), in several cell types. Previous studies have suggested that cellular control of one or both collagenases can occur through direct transcriptional mechanisms and/or after secretion through proenzyme processing and interactions with metalloproteinase inhibitors. Using human prostate cancer cell lines, we have found that TGF-β1 induces the MMP-9 proenzyme; however, this induction does not result from direct effects on gene transcription but, instead, through a protein synthesis–requiring process leading to increased MMP-9 mRNA stability. In addition, we have examined levels of TGF-β1 regulation of MMP-2 in one prostate cancer cell line and found that TGF-β1 induces higher secreted levels of this collagenase through increased stability of the secreted 72-kDa proenzyme. These results identify two novel nontranscriptional pathways for the cellular regulation of MMP-9 and MMP-2 collagenase gene expression and activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Varicella–zoster virus (VZV) is a human herpesvirus that causes varicella (chicken pox) as a primary infection and, after a variable period of latency in trigeminal and dorsal root ganglia, reactivates to cause herpes zoster (shingles). Both of these conditions may be followed by a variety of neurological complications, especially in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. There have been a number of conflicting reports regarding the cellular location of latent VZV within human ganglia. To address this controversy we examined fixed wax-embedded trigeminal ganglia from 30 individuals obtained at autopsy, including 11 with HIV infection, 2 neonates, and 17 immunocompetent individuals, for the presence of latent VZV. Polymerase chain reaction (PCR), in situ hybridization, and PCR in situ amplification techniques with oligonucleotide probes and primer sequences to VZV genes 18, 21, 29, and 63 were used. VZV DNA in ganglia was detected in 15 individuals by using PCR alone, and in 12 individuals (6 normal non-HIV and 6 positive HIV individuals, but not neonatal ganglia) by using PCR in situ amplification. When in situ hybridization alone was used, 5 HIV-positive individuals and only 1 non-HIV individual showed VZV nucleic acid signals in ganglia. In all of the VZV-positive ganglia examined, VZV nucleic acid was detected in neuronal nuclei. Only occasional nonneuronal cells contained VZV DNA. We conclude from these studies that the neuron is the predominant site of latent VZV in human trigeminal ganglia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Werner Syndrome (WS) is a human genetic disorder with many features of premature aging. The gene defective in WS (WRN) has been cloned and encodes a protein homologous to several helicases, including Escherichia coli RecQ, the human Bloom syndrome protein (BLM), and Saccharomyces cerevisiae Sgs1p. To better define the function of WRN protein we have determined its subcellular localization. Indirect immunofluorescence using polyclonal anti-human WRN shows a predominant nucleolar localization. Studies of WRN mutant cells lines confirmed the specificity of antibody recognition. No difference was seen in the subcellular localization of the WRN protein in a variety of normal and transformed human cell lines, including both carcinomas and sarcomas. The nucleolar localization of human WRN protein was supported by the finding that upon biochemical subcellular fractionation, WRN protein is present in an increased concentration in a subnuclear fraction enriched for nucleolar proteins. We have also determined the subcellular localization of the mouse WRN homologue (mWRN). In contrast to human WRN protein, mWRN protein is present diffusely throughout the nucleus. Understanding the function of WRN in these organisms of vastly differing lifespan may yield new insights into the mechanisms of lifespan determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 tumor suppressor gene has been shown to play an important role in determining cell fate. Overexpression of wild-type p53 in tumor cells has been shown to lead to growth arrest or apoptosis. Previous studies in fibroblasts have provided indirect evidence for a link between p53 and senescence. Here we show, using an inducible p53 expression system, that wild-type p53 overexpression in EJ bladder carcinoma cells, which have lost functional p53, triggers the rapid onset of G1 and G2/M growth arrest associated with p21 up-regulation and repression of mitotic cyclins (cyclin A and B) and cdc2. Growth arrest in response to p53 induction became irreversible within 48-72 h, with cells exhibiting morphological features as well as specific biochemical and ultrastructural markers of the senescent phenotype. These findings provide direct evidence that p53 overexpression can activate the rapid onset of senescence in tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small molecules that bind their biological receptors with high affinity and selectivity can be isolated from randomized pools of combinatorial libraries. RNA-protein interactions are important in many cellular functions, including transcription, RNA splicing, and translation. One example of such interactions is the mechanism of trans-activation of HIV-1 gene expression that requires the interaction of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5′ end of all nascent HIV-1 transcripts. Here we demonstrate the isolation of small TAR RNA-binding molecules from an encoded combinatorial library. We have made an encoded combinatorial tripeptide library of 24,389 possible members from d-and l-alpha amino acids on TentaGel resin. Using on-bead screening we have identified a small family of mostly heterochiral tripeptides capable of structure-specific binding to the bulge loop of TAR RNA. In vitro binding studies reveal stereospecific discrimination when the best tripeptide ligand is compared with diastereomeric peptide sequences. In addition, the most strongly binding tripeptide was shown to suppress transcriptional activation by Tat protein in human cells with an IC50 of ≈50 nM. Our results indicate that tripeptide RNA ligands are cell permeable, nontoxic to cells, and capable of inhibiting expression of specific genes by interfering with RNA-protein interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common autosomal recessive disease associated with loss of regulation of dietary iron absorption and excessive iron deposition in major organs of the body. Recently, a candidate gene for HH (also called HFE) was identified that encodes a novel MHC class I-like protein. Most patients with HH are homozygous for the same mutation in the HFE gene, resulting in a C282Y change in the HFE protein. Studies in cultured cells show that the C282Y mutation abrogates the binding of the recombinant HFE protein to β2-microglobulin (β2M) and disrupts its transport to the cell surface. The HFE protein was shown by immunohistochemistry to be expressed in certain epithelial cells throughout the human alimentary tract and to have a unique localization in the cryptal cells of small intestine, where signals to regulate iron absorption are received from the body. In the studies presented here, we demonstrate by immunohistochemistry that the HFE protein is expressed in human placenta in the apical plasma membrane of the syncytiotrophoblasts, where the transferrin-bound iron is normally transported to the fetus via receptor-mediated endocytosis. Western blot analyses show that the HFE protein is associated with β2M in placental membranes. Unexpectedly, the transferrin receptor was also found to be associated with the HFE protein/β2M complex. These studies place the normal HFE protein at the site of contact with the maternal circulation where its association with transferrin receptor raises the possibility that the HFE protein plays some role in determining maternal/fetal iron homeostasis. These findings also raise the question of whether mutations in the HFE gene can disrupt this association and thereby contribute to some forms of neonatal iron overload.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is an autoimmune multisystem inflammatory disease characterized by the production of pathogenic autoantibodies. Previous genetic studies have suggested associations with HLA Class II alleles, complement gene deficiencies, and Fc receptor polymorphisms; however, it is likely that other genes contribute to SLE susceptibility and pathogenesis. Here, we report the results of a genome-wide microsatellite marker screen in 105 SLE sib-pair families. By using multipoint nonparametric methods, the strongest evidence for linkage was found near the HLA locus (6p11-p21) [D6S257, logarithm of odds (lod) = 3.90, P = 0.000011] and at three additional regions: 16q13 (D16S415, lod = 3.64, P = 0.000022), 14q21–23 (D14S276, lod = 2.81, P = 0.00016), and 20p12 (D20S186, lod = 2.62, P = 0.00025). Another nine regions (1p36, 1p13, 1q42, 2p15, 2q21–33, 3cent-q11, 4q28, 11p15, and 15q26) were identified with lod scores ≥1.00. These data support the hypothesis that multiple genes, including one in the HLA region, influence susceptibility to human SLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many problems in human society reflect the inability of selfish parties to cooperate. The “Iterated Prisoner’s Dilemma” has been used widely as a model for the evolution of cooperation in societies. Axelrod’s computer tournaments and the extensive simulations of evolution by Nowak and Sigmund and others have shown that natural selection can favor cooperative strategies in the Prisoner’s Dilemma. Rigorous empirical tests, however, lag behind the progress made by theorists. Clear predictions differ depending on the players’ capacity to remember previous rounds of the game. To test whether humans use the kind of cooperative strategies predicted, we asked students to play the iterated Prisoner’s Dilemma game either continuously or interrupted after each round by a secondary memory task (i.e., playing the game “Memory”) that constrained the students’ working-memory capacity. When playing without interruption, most students used “Pavlovian” strategies, as predicted, for greater memory capacity, and the rest used “generous tit-for-tat” strategies. The proportion of generous tit-for-tat strategies increased when games of Memory interfered with the subjects’ working memory, as predicted. Students who continued to use complex Pavlovian strategies were less successful in the Memory game, but more successful in the Prisoner’s Dilemma, which indicates a trade-off in memory capacity for the two tasks. Our results suggest that the set of strategies predicted by game theorists approximates human reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue factor (TF) is the cellular receptor for an activated form of clotting factor VII (VIIa) and the binding of factor VII(a) to TF initiates the coagulation cascade. Sequence and structural patterns extracted from a global alignment of TF confers homology with interferon receptors of the cytokine receptor super family. Several recent studies suggested that TF could function as a genuine signal transducing receptor. However, it is unknown which biological function(s) of cells are altered upon the ligand, VIIa, binding to TF. In the present study, we examined the effect of VIIa binding to cell surface TF on cellular gene expression in fibroblasts. Differential mRNA display PCR technique was used to identify transcriptional changes in fibroblasts upon VIIa binding to TF. The display showed that VIIa binding to TF either up or down-regulated several mRNA species. The differential expression of one such transcript, VIIa-induced up-regulation, was confirmed by Northern blot analysis. Isolation of a full-length cDNA corresponding to the differentially expressed transcript revealed that VIIa-up-regulated gene was poly(A) polymerase. Northern blot analysis of various carcinomas and normal human tissues revealed an over expression of PAP in cancer tissues. Enhanced expression of PAP upon VIIa binding to tumor cell TF may potentially play an important role in tumor metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial cells are important in a variety of physiological and pathophysiological processes. The growth and functions of vascular endothelial cells are regulated both by soluble mitogenic and differentiation factors and by interactions with the extracellular matrix; however, relatively little is known about the role of the matrix. In the present study, we investigate whether integrin-mediated anchorage to a substratum coated with the extracellular matrix protein fibronectin regulates growth factor signaling events in human endothelial cells. We show that cell adhesion to fibronectin and growth factor stimulation trigger distinct initial tyrosine phosphorylation events in endothelial cells. Thus, integrin-dependent adhesion of endothelial cells leads to tyrosine phosphorylation of both focal adhesion kinase and paxillin, but not of several growth factor receptors. Conversely, EGF stimulation causes receptor autophosphorylation, with no effect on focal adhesion kinase or paxillin tyrosine phosphorylation. Adhesion to fibronectin, in the absence of growth factors, leads to activation of MAPK. In addition, adhesion to fibronectin also potentiates growth factor signaling to MAPK. Thus, polypeptide growth factor activation of MAPK in anchored cells is far more effective than in cells maintained in suspension. Other agonists known to activate MAPK were also examined for their ability to activate MAPK in an anchorage-dependent manner. The neuropeptide bombesin, the bioactive lipid lysophosphatidic acid (LPA), and the cytokine tumor necrosis factor α, which signal through diverse mechanisms, were all able to activate MAPK to a much greater degree in fibronectin-adherent cells than in suspended cells. In addition, tumor necrosis factor α activation of c-Jun kinase (JNK) was also much more robust in anchored cells. Together, these data suggest a cooperation between integrins and soluble mitogens in efficient propagation of signals to downstream kinases. This cooperation may contribute to anchorage dependence of mitogenic cell cycle progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of the fibroblast growth factor-2 (FGF-2) gene and the consequent accumulation of FGF-2 in the nucleus are operative events in mitotic activation and hypertrophy of human astrocytes. In the brain, these events are associated with cellular degeneration and may reflect release of the FGF-2 gene from cell contact inhibition. We used cultures of human astrocytes to examine whether expression of FGF-2 is also controlled by soluble growth factors. Treatment of subconfluent astrocytes with interleukin-1β, epidermal or platelet-derived growth factors, 18-kDa FGF-2, or serum or direct stimulation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate or adenylate cyclase with forskolin increased the levels of 18-, 22-, and 24-kDa FGF-2 isoforms and FGF-2 mRNA. Transfection of FGF-2 promoter–luciferase constructs identified a unique −555/−513 bp growth factor-responsive element (GFRE) that confers high basal promoter activity and activation by growth factors to a downstream promoter region. It also identified a separate region (−624/−556 bp) essential for PKC and cAMP stimulation. DNA–protein binding assays indicated that novel cis-acting elements and trans-acting factors mediate activation of the FGF-2 gene. Southwestern analysis identified 40-, 50-, 60-, and 100-kDa GFRE-binding proteins and 165-, 112-, and 90-kDa proteins that interacted with the PKC/cAMP-responsive region. The GFRE and the element essential for PKC and cAMP stimulation overlap with the region that mediates cell contact inhibition of the FGF-2 promoter. The results show a two-stage regulation of the FGF-2 gene: 1) an initial induction by reduced cell contact, and 2) further activation by growth factors or the PKC-signaling pathway. The hierarchic regulation of the FGF-2 gene promoter by cell density and growth factors or PKC reflects a two-stage activation of protein binding to the GFRE and to the PKC/cAMP-responsive region, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cdc6 protein of budding yeast and its homologues in other species play an essential role in the initiation of DNA replication. A cDNA encoding a human homologue of Cdc6 (HsCdc6) has been cloned and expressed as a fusion protein in a soluble and functionally active form. The purified protein bound specifically to ATP and slowly hydrolyzed it, whereas HsCdc6 mutants containing amino acid substitutions in the Walker A or B motifs were defective. The mutant proteins retained the ability to bind HsOrc1 and HsCdc6 but displayed aberrant conformations in the presence of nucleotides. Microinjection of either mutant protein into human cells in G1 inhibited DNA replication, suggesting that ATP binding and hydrolysis by HsCdc6 are essential for DNA replication.