2 resultados para structural variations
em National Center for Biotechnology Information - NCBI
Resumo:
Prion diseases are characterized by the presence of the abnormal prion protein PrPSc, which is believed to be generated by the conversion of the α-helical structure that predominates in the normal PrP isoform into a β-sheet structure resistant to proteinase K (PK). In human prion diseases, two major types of PrPSc, type 1 and 2, can be distinguished based on the difference in electrophoretic migration of the PK-resistant core fragment. In this study, protein sequencing was used to identify the PK cleavage sites of PrPSc in 36 cases of prion diseases. We demonstrated two primary cleavage sites at residue 82 and residue 97 for type 1 and type 2 PrPSc, respectively, and numerous secondary cleavages distributed along the region spanning residues 74–102. Accordingly, we identify three regions in PrPSc: one N-terminal (residues 23–73) that is invariably PK-sensitive, one C-terminal (residues 103–231) that is invariably PK-resistant, and a third variable region (residues 74–102) where the site of the PK cleavage, likely reflecting the extent of the β-sheet structure, varies mostly as a function of the PrP genotype at codon 129.
Resumo:
Oleamide is an endogenous fatty acid primary amide that possesses sleep-inducing properties in animals and that has been shown to effect serotonergic receptor responses and block gap junction communication. Herein, the potentiation of the 5-HT1A receptor response is disclosed, and a study of the structural features of oleamide required for potentiation of the 5-HT2A and 5-HT1A response to serotonin (5-HT) is described. Of the naturally occurring fatty acids, the primary amide of oleic acid (oleamide) is the most effective at potentiating the 5-HT2A receptor response. The structural features required for activity were found to be highly selective. The presence, position, and stereochemistry of the Δ9-cis double bond is required, and even subtle structural variations reduce or eliminate activity. Secondary or tertiary amides may replace the primary amide but follow a well defined relationship requiring small amide substituents, suggesting that the carboxamide serves as a hydrogen bond acceptor but not donor. Alternative modifications at the carboxamide as well as modifications of the methyl terminus or the hydrocarbon region spanning the carboxamide and double bond typically eliminate activity. A less extensive study of the 5-HT1A potentiation revealed that it is more tolerant and accommodates a wider range of structural modifications. An interesting set of analogs was identified that inhibit rather than potentiate the 5-HT2A, but not the 5-HT1A, receptor response, further suggesting that such analogs may permit the selective modulation of serotonin receptor subtypes and even have opposing effects on the different subtypes.