2 resultados para strong coupling expansions
em National Center for Biotechnology Information - NCBI
Resumo:
GroEL is an allosteric protein that facilitates protein folding in an ATP-dependent manner. Herein, the relationship between cooperative ATP binding by GroEL and the kinetics of GroE-assisted folding of two substrates with different GroES dependence, mouse dihydrofolate reductase (mDHFR) and mitochondrial malate dehydrogenase, is examined by using cooperativity mutants of GroEL. Strong intra-ring positive cooperativity in ATP binding by GroEL decreases the rate of GroEL-assisted mDHFR folding owing to a slow rate of the ATP-induced transition from the protein-acceptor state to the protein-release state. Inter-ring negative cooperativity in ATP binding by GroEL is found to affect the kinetic partitioning of mDHFR, but not of mitochondrial malate dehydrogenase, between folding in solution and folding in the cavity underneath GroES. Our results show that protein folding by this “two-stroke motor” is coupled to cooperative ATP binding.
Resumo:
Bacteriorhodopsin is a membrane protein that functions as a light-driven proton pump. Each cycle of proton transport is initiated by the light-induced isomerization of retinal from the all-trans to 13-cis configuration and is completed by the protein-driven reisomerization of retinal to the all-trans configuration. Previous studies have shown that replacement of Leu-93, a residue in close proximity to the 13-methyl group of retinal, by alanine, resulted in a 250-fold increase in the time required to complete each photocycle. Here, we show that the kinetic defect in the photocycle of the Leu-93-->Ala mutant occurs at a stage after the completion of proton transport and can be overcome in the presence of strong background illumination. Time-resolved retinal-extraction experiments demonstrate the continued presence of a 13-cis intermediate in the photocycle of the Leu-93-->Ala mutant well after the completion of proton release and uptake. These results indicate that retinal reisomerization is kinetically the rate-limiting step in the photocycle of this mutant and that the slow thermal reisomerization can be bypassed by the absorption of a second photon. The effects observed for the Leu-93-->Ala mutant are not observed upon replacement of any other residue in van der Waals contact with retinal or upon replacement of Leu-93 by valine. We conclude that the contact between Leu-93 and the 13-methyl group of retinal plays a key role in controlling the rate of protein conformational changes associated with retinal reisomerization and return of the protein to the initial state.