4 resultados para stress relaxation behavior
em National Center for Biotechnology Information - NCBI
Resumo:
Measurement of fluorescent lifetimes of dye-tagged DNA molecules reveal the existence of different conformations. Conformational fluctuations observed by fluorescence correlation spectroscopy give rise to a relaxation behavior that is described by “stretched” exponentials and indicates the presence of a distribution of transition rates between two conformations. Whether this is an inhomogeneous distribution, where each molecule contributes with its own reaction rate to the overall distribution, or a homogeneous distribution, where the reaction rate of each molecule is time-dependent, is not yet known. We used a tetramethylrhodamine-linked 217-bp DNA oligonucleotide as a probe for conformational fluctuations. Fluorescence fluctuations from single DNA molecules attached to a streptavidin-coated surface directly show the transitions between two conformational states. The conformational fluctuations typical for single molecules are similar to those seen in single ion channels in cell membranes.
Resumo:
Orphanin FQ (OFQ, Nociceptin) is a recently discovered 17-amino acid neuropeptide that is structurally related to the opioid peptides but does not bind opioid receptors. OFQ has been proposed to act as an anti-opioid peptide, but its widespread sites of action in the brain suggest that it may have more general functions. Here we show that OFQ plays an important role in higher brain functions because it can act as an anxiolytic to attenuate the behavioral inhibition of animals acutely exposed to stressful/anxiogenic environmental conditions. OFQ anxiolytic-like effects were consistent across several behavioral paradigms generating different types of anxiety states in animals (light-dark preference, elevated plus-maze, exploratory behavior of an unfamiliar environment, pharmacological anxiogenesis, operant conflict) and were observed at low nonsedating doses (0.1–3 nmol, intracerebroventricular). Like conventional anxiolytics, OFQ interfered with regular sensorimotor function at high doses (>3 nmol). Our results show that an important role of OFQ is to act as an endogenous regulator of acute anxiety responses. OFQ, probably in concert with other major neuropeptides, exerts a modulatory role on the central integration of stressful stimuli and, thereby, may modulate anxiety states generated by acute stress.
Resumo:
Early experiences such as prenatal stress significantly influence the development of the brain and the organization of behavior. In particular, prenatal stress impairs memory processes but the mechanism for this effect is not known. Hippocampal granule neurons are generated throughout life and are involved in hippocampal-dependent learning. Here, we report that prenatal stress in rats induced lifespan reduction of neurogenesis in the dentate gyrus and produced impairment in hippocampal-related spatial tasks. Prenatal stress blocked the increase of learning-induced neurogenesis. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for psychopathological vulnerabilities in aging.
Resumo:
Prairie voles (Microtus ochrogaster) are monogamous rodents that form pair bonds characterized by a preference for a familiar social partner. In male prairie voles, exposure to either the stress of swimming or exogenous injections of corticosterone facilitate the development of a social preference for a female with which the male was paired after injection or swimming. Conversely, adrenalectomy inhibits partner preference formation in males and the behavioral effects of adrenalectomy are reversed by corticosterone replacement. In female prairie voles, swim stress interferes with the development of social preferences and corticosterone treatments inhibit the formation of partner preferences, while adrenalectomized females form preferences more quickly than adrenally intact controls. Because sex differences in both behavior and physiology are typically reduced in monogamous species, we initially predicted that male and female prairie voles would exhibit similar behavioral responses to corticosterone. However, our findings suggest an unanticipated sexual dimorphism in the physiological processes modulating social preferences. This dimorphic involvement of stress hormones in pair bonding provides a proximate mechanism for regulating social organization, while permitting males and females to adapt their reproductive strategies in response to environmental challenges.