6 resultados para stream function-vorticity-current density

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low voltage-activated, or T-type, calcium currents are important regulators of neuronal and muscle excitability, secretion, and possibly cell growth and differentiation. The gene (or genes) coding for the pore-forming subunit of low voltage-activated channel proteins has not been unequivocally identified. We have used reverse transcription–PCR to identify partial clones from rat atrial myocytes that share high homology with a member of the E class of calcium channel genes. Antisense oligonucleotides targeting one of these partial clones (raE1) specifically block the increase in T-current density that normally results when atrial myocytes are treated with insulin-like growth factor 1 (IGF-1). Antisense oligonucleotides targeting portions of the neuronal rat α1E sequence, which are not part of the clones detected in atrial tissue, also block the IGF-1-induced increase in T-current, suggesting that the high homology to α1E seen in the partial clone may be present in the complete atrial sequence. The basal T-current expressed in these cells is also blocked by antisense oligonucleotides, which is consistent with the notion that IGF-1 up-regulates the same gene that encodes the basal current. These results support the hypothesis that a member of the E class of calcium channel genes encodes a low voltage-activated calcium channel in atrial myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovery of cell volume in response to osmotic stress is mediated in part by increases in the Cl- permeability of the plasma membrane. These studies evaluate the hypothesis that ATP release and autocrine stimulation of purinergic (P2) receptors couple increases in cell volume to opening of Cl- channels. In HTC rat hepatoma cells, swelling induced by hypotonic exposure increased membrane Cl- current density to 44.8 +/- 7.1 pA/pF at -80 mV. Both the rate of volume recovery and the increase in Cl- permeability were inhibited in the presence of the ATP hydrolase apyrase (3 units/ml) or by exposure to the P2 receptor blockers suramin and Reactive Blue 2 (10-100 microM). Cell swelling also stimulated release of ATP. Hypotonic exposure increased the concentration of ATP in the effluent of perfused cells by 170 +/- 36 nM in the presence of a nucleotidase inhibitor (P < 0.01). In whole-cell recordings with ATP as the charge carrier, cell swelling increased membrane current density approximately 30-fold to 16.5 +/- 10.4 pA/pF. These findings indicate that increases in cell volume lead to efflux of ATP through opening of a conductive pathway consistent with a channel, and that extracellular ATP is required for recovery from swelling. ATP may function as an autocrine factor that couples increases in cell volume to opening of Cl- channels through stimulation of P2 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tissue distributions and physiological properties of a variety of cloned voltage-gated potassium channel genes have been characterized extensively, yet relatively little is known about the mechanisms controlling expression of these genes. Here, we report studies on the regulation of Kv1.1 expressed endogenously in the C6 glioma cell line. We demonstrate that elevation of intracellular cAMP leads to the accelerated degradation of Kv1.1 RNA. The cAMP-induced decrease in Kv1.1 RNA is followed by a decrease in Kv1.1 protein and a decrease in the whole cell sustained K+ current amplitude. Dendrotoxin-I, a relatively specific blocker of Kv1.1, blocks 96% of the sustained K+ current in glioma cells, causing a shift in the resting membrane potential from −40 mV to −7 mV. These data suggest that expression of Kv1.1 contributes to setting the resting membrane potential in undifferentiated glioma cells. We therefore suggest that receptor-mediated elevation of cAMP reduces outward K+ current density by acting at the translational level to destabilize Kv1.1 RNA, an additional mechanism for regulating potassium channel gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many neurons of the central nervous system display multiple high voltage-activated Ca2+ currents, pharmacologically classified as L-, N-, P-, Q-, and R-type. Of these current types, the R-type is the least understood. The leading candidate for the molecular correlate of R-type currents in cerebellar granule cells is the α1E subunit, which yields Ca2+ currents very similar to the R-type when expressed in heterologous systems. As a complementary approach, we tested whether antisense oligonucleotides against α1E could decrease the expression of R-type current in rat cerebellar granule neurons in culture. Cells were supplemented with either antisense or sense oligonucleotides and whole-cell patch clamp recordings were obtained after 6–8 days in vitro. Incubation with α1E antisense oligonucleotide caused a 52.5% decrease in the peak R-type current density, from −10 ± 0.6 picoamperes/picofarad (pA/pF) (n = 6) in the untreated controls to −4.8 ± 0.8 pA/pF (n = 11) (P < 0.01). In contrast, no significant changes in the current expression were seen in sense oligonucleotide-treated cells (−11.3 ± 3.2 pA/pF). The specificity of the α1E antisense oligonucleotides was supported by the lack of change in estimates of the P/Q current amplitude. Furthermore, antisense and sense oligonucleotides against α1A did not affect R-type current expression (−11.5 ± 1.7 and −11.7 ± 1.7 pA/pF, respectively), whereas the α1A antisense oligonucleotide significantly reduced whole cell currents under conditions in which P/Q current is dominant. Our results support the hypothesis that members of the E class of α1 subunits support the high voltage-activated R-type current in cerebellar granule cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle contraction is the result of myosin cross-bridges (XBs) cyclically interacting with the actin-containing thin filament. This interaction is modulated by the thin filament regulatory proteins, troponin and tropomyosin (Tm). With the use of an in vitro motility assay, the role of Tm in myosin’s ability to generate force and motion was assessed. At saturating myosin surface densities, Tm had no effect on thin filament velocity. However, below 50% myosin saturation, a significant reduction in actin–Tm filament velocity was observed, with complete inhibition of movement occurring at 12.5% of saturating surface densities. Under similar conditions, actin filaments alone demonstrated no reduction in velocity. The effect of Tm on force generation was assessed at the level of a single thin filament. In the absence of Tm, isometric force was a linear function of the density of myosin on the motility surface. At 50% myosin surface saturation, the presence of Tm resulted in a 2-fold enhancement of force relative to actin alone. However, no further potentiation of force was observed with Tm at saturating myosin surface densities. These results indicate that, in the presence of Tm, the strong binding of myosin cooperatively activates the thin filament. The inhibition of velocity at low myosin densities and the potentiation of force at higher myosin densities suggest that Tm can directly modulate the kinetics of a single myosin XB and the recruitment of a population of XBs, respectively. At saturating myosin conditions, Tm does not appear to affect the recruitment or the kinetics of myosin XBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purified RNA polymerase II initiated transcription from the yeast CUP1 promoter fused to a C-less cassette if the DNA was negatively supercoiled. Relaxed plasmid was not transcribed. Transcription did not require addition of any other transcription factors. TATA box-binding protein (TBP) was not detectable in the polymerase preparation and the TATA box was not required. Deletion analysis of the CUP1 promoter revealed that a 25-bp element containing the initiation region was sufficient for recognition by polymerase. Two transcription start sites were mapped, one of which is identical to one of the two major start sites observed in vivo. Our observations can be accounted for by using a theoretical analysis of the probability of DNA melting within the plasmid as a function of superhelix density: the CUP1 initiation element is intrinsically unstable to superhelical stress, permitting entry of the polymerase, which then scans the DNA to locate the start site. In support of this analysis, the CUP1 promoter was sensitive to mung bean nuclease. These observations and a previous theoretical analysis of yeast genes support the idea that promoters are stress points within the DNA superhelix. The role of transcription factors might be to mark the promoter and to regulate specific melting of promoter DNA.