3 resultados para stochastic linear programming

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a recent burst of activity in the atmosphere/ocean sciences community in utilizing stable linear Langevin stochastic models for the unresolved degree of freedom in stochastic climate prediction. Here several idealized models for stochastic climate modeling are introduced and analyzed through unambiguous mathematical theory. This analysis demonstrates the potential need for more sophisticated models beyond stable linear Langevin equations. The new phenomena include the emergence of both unstable linear Langevin stochastic models for the climate mean and the need to incorporate both suitable nonlinear effects and multiplicative noise in stochastic models under appropriate circumstances. The strategy for stochastic climate modeling that emerges from this analysis is illustrated on an idealized example involving truncated barotropic flow on a beta-plane with topography and a mean flow. In this example, the effect of the original 57 degrees of freedom is well represented by a theoretically predicted stochastic model with only 3 degrees of freedom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general approach to forming structure-activity relationships (SARs). This approach is based on representing chemical structure by atoms and their bond connectivities in combination with the inductive logic programming (ILP) algorithm PROGOL. Existing SAR methods describe chemical structure by using attributes which are general properties of an object. It is not possible to map chemical structure directly to attribute-based descriptions, as such descriptions have no internal organization. A more natural and general way to describe chemical structure is to use a relational description, where the internal construction of the description maps that of the object described. Our atom and bond connectivities representation is a relational description. ILP algorithms can form SARs with relational descriptions. We have tested the relational approach by investigating the SARs of 230 aromatic and heteroaromatic nitro compounds. These compounds had been split previously into two subsets, 188 compounds that were amenable to regression and 42 that were not. For the 188 compounds, a SAR was found that was as accurate as the best statistical or neural network-generated SARs. The PROGOL SAR has the advantages that it did not need the use of any indicator variables handcrafted by an expert, and the generated rules were easily comprehensible. For the 42 compounds, PROGOL formed a SAR that was significantly (P < 0.025) more accurate than linear regression, quadratic regression, and back-propagation. This SAR is based on an automatically generated structural alert for mutagenicity.