1 resultado para stochastic approximation algorithm
em National Center for Biotechnology Information - NCBI
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archive of European Integration (3)
- Aston University Research Archive (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (66)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Brock University, Canada (17)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CentAUR: Central Archive University of Reading - UK (131)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (36)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (193)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (32)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (45)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (18)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (24)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (9)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (15)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (1)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (78)
- Université de Montréal (2)
- Université de Montréal, Canada (45)
- University of Michigan (1)
- University of Queensland eSpace - Australia (88)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.