8 resultados para stem form
em National Center for Biotechnology Information - NCBI
Resumo:
Epidermis is renewed by a population of stem cells that have been defined in vivo by slow turnover, label retention, position in the epidermis, and enrichment in β1 integrin, and in vitro by clonogenic growth, prolonged serial passage, and rapid adherence to extracellular matrix. The goal of this study is to determine whether clonogenic cells with long-term growth potential in vitro persist in vivo and give rise to a fully differentiated epidermis. Human keratinocytes were genetically labeled in culture by transduction with a retrovirus encoding the lacZ gene and grafted to athymic mice. Analysis of the cultures before grafting showed that 21.1–27.8% of clonogenic cells with the capacity for >30 generations were successfully transduced. In vivo, β-galactosidase (β-gal) positive cells participated in the formation of a fully differentiated epithelium and were detected throughout the 40-week postgraft period, initially as loosely scattered clusters and later as distinct vertical columns. Viable cells recovered from excised grafts were seeded at clonal densities and 23.3–33.3% of the colonies thus formed were β-gal positive. In addition, no evidence of transgene inactivation was obtained: all keratinocyte colonies recovered from grafted tissue that were β-gal negative also lacked the lacZ transgene. These results show that cells with long-term growth properties in vitro do indeed persist in vivo and form a fully differentiated epidermis, thereby exhibiting the properties of stem cells.
Resumo:
Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.
Resumo:
Previous attempts to express functional DNA cytosine methyltransferase (EC 2.1.1.37) in cells transfected with the available Dnmt cDNAs have met with little or no success. We show that the published Dnmt sequence encodes an amino terminal-truncated protein that is tolerated only at very low levels when stably expressed in embryonic stem cells. Normal expression levels were, however, obtained with constructs containing a continuation of an ORF with a coding capacity of up to 171 amino acids upstream of the previously defined start site. The protein encoded by these constructs comigrated in SDS/PAGE with the endogenous enzyme and restored methylation activity in transfected cells. This was shown by functional rescue of Dnmt mutant embryonic stem cells that contain highly demethylated genomic DNA and fail to differentiate normally. When transfected with the minigene construct, the genomic DNA became remethylated and the cells regained the capacity to form teratomas that displayed a wide variety of differentiated cell types. Our results define an amino-terminal domain of the mammalian MTase that is crucial for stable expression and function in vivo.
Resumo:
The compaction level of arrays of nucleosomes may be understood in terms of the balance between the self-repulsion of DNA (principally linker DNA) and countering factors including the ionic strength and composition of the medium, the highly basic N termini of the core histones, and linker histones. However, the structural principles that come into play during the transition from a loose chain of nucleosomes to a compact 30-nm chromatin fiber have been difficult to establish, and the arrangement of nucleosomes and linker DNA in condensed chromatin fibers has never been fully resolved. Based on images of the solution conformation of native chromatin and fully defined chromatin arrays obtained by electron cryomicroscopy, we report a linker histone-dependent architectural motif beyond the level of the nucleosome core particle that takes the form of a stem-like organization of the entering and exiting linker DNA segments. DNA completes ≈1.7 turns on the histone octamer in the presence and absence of linker histone. When linker histone is present, the two linker DNA segments become juxtaposed ≈8 nm from the nucleosome center and remain apposed for 3–5 nm before diverging. We propose that this stem motif directs the arrangement of nucleosomes and linker DNA within the chromatin fiber, establishing a unique three-dimensional zigzag folding pattern that is conserved during compaction. Such an arrangement with peripherally arranged nucleosomes and internal linker DNA segments is fully consistent with observations in intact nuclei and also allows dramatic changes in compaction level to occur without a concomitant change in topology.
Resumo:
The spermatogonial stem cell initiates and maintains spermatogenesis in the testis. To perform this role, the stem cell must self replicate as well as produce daughter cells that can expand and differentiate to form spermatozoa. Despite the central importance of the spermatogonial stem cell to male reproduction, little is known about its morphological or biochemical characteristics. This results, in part, from the fact that spermatogonial stem cells are an extremely rare cell population in the testis, and techniques for their enrichment are just beginning to be established. In this investigation, we used a multiparameter selection strategy, combining the in vivo cryptorchid testis model with in vitro fluorescence-activated cell sorting analysis. Cryptorchid testis cells were fractionated by fluorescence-activated cell sorting analysis based on light-scattering properties and expression of the cell surface molecules α6-integrin, αv-integrin, and the c-kit receptor. Two important observations emerged from these analyses. First, spermatogonial stem cells from the adult cryptorchid testis express little or no c-kit. Second, the most effective enrichment strategy, in this study, selected cells with low side scatter light-scattering properties, positive staining for α6-integrin, and negative or low αv-integrin expression, and resulted in a 166-fold enrichment of spermatogonial stem cells. Identification of these characteristics will allow further purification of these valuable cells and facilitate the investigation of molecular mechanisms governing spermatogonial stem cell self renewal and hierarchical differentiation.
Resumo:
Blastocyst-derived pluripotent mouse embryonic stem cells can differentiate in vitro to form so-called embryoid bodies (EBs), which recapitulate several aspects of murine embryogenesis. We used this in vitro model to study oxygen supply and consumption as well as the response to reduced oxygenation during the earliest stages of development. EBs were found to grow equally well when cultured at 20% (normoxia) or 1% (hypoxia) oxygen during the first 5 days of differentiation. Microelectrode measurements of pericellular oxygen tension within 13- to 14-day-old EBs (diameter 510-890 micron) done at 20% oxygen revealed efficient oxygenation of the EBs' core region. Confocal laser scanning microscopy analysis of EBs incubated with fluorescent dyes that specifically stain living cells confirmed that the cells within an EB were viable. To determine the EBs' capability to sense low oxygen tension and to specifically respond to low ambient oxygen by modulating gene expression we quantified aldolase A and vascular endothelial growth factor (VEGF) mRNAs, since expression of these genes is upregulated by hypoxia in a variety of cells. Compared with the normoxic controls, we found increased aldolase A and VEGF mRNA levels after exposing 8- to 9-day-old EBs to 1% oxygen. We propose that EBs represent a powerful tool to study oxygen-regulated gene expression during the early steps of embryogenesis, where the preimplantation conceptus resides in a fluid environment with low oxygen tension until implantation and vascularization allow efficient oxygenation.
Resumo:
Eph and its homologues form the largest subfamily of receptor tyrosine kinases. Normal expression patterns of this subfamily indicate roles in differentiation and development, whereas their overexpression has been linked to oncogenesis. This study investigated the potential role of Eph-related molecules during very early embryonic development by examining their expression in embryonic stem (ES) cells and embryoid bodies differentiated from ES cells in vitro. By use of a strategy based on reverse transcriptase-mediated PCR, nine clones containing Eph-subfamily sequence were isolated from ES cells. Of these, eight were almost identical to one of four previously identified molecules (Sek, Nuk, Eck, and Mek4). However, one clone contained sequence from a novel Eph-subfamily member, which was termed embryonic stem-cell kinase or Esk. Northern analysis showed expression of Esk in ES cells, embryoid bodies, day 12 mouse embryos, and some tissues of the adult animal. Levels of expression were similar in ES cells and embryoid bodies. By comparison, Mek4 showed no significant transcription in the ES cell cultures by Northern analysis, whereas Eck displayed stronger signals in ES cells than in the embryoid bodies. These results suggest that Eph-subfamily molecules may play roles during the earliest phases of embryogenesis. Furthermore, the relative importance of different members of this subfamily appears to change as development proceeds.
Resumo:
Mutant mice produced by gene targeting in embryonic stem (ES) cells often have a complex or embryonic lethal phenotype. In these cases, it would be helpful to identify tissues and cell types first affected in mutant embryos by following the contribution to chimeras of ES cells homozygous for the mutant allele. Although a number of strategies for following ES cell development in vivo have been reported, each has limitations that preclude its general application. In this paper, we describe ES cell lines that can be tracked to every nucleated cell type in chimeras at all developmental stages. These lines were derived from blastocysts of mice that carry an 11-Mb beta-globin transgene on chromosome 3. The transgene is readily detected by DNA in situ hybridization, providing an inert, nuclear-localized marker whose presence is not affected by transcriptional or translational controls. The "WW" series of ES lines possess the essential features of previously described ES lines, including giving rise to a preponderance of male chimeras, all of which have to date exhibited germ-line transmission. In addition, clones selected for single or double targeting events form strong chimeras, demonstrating the feasibility of using WW6 cells to identify phenotypes associated with the creation of a null mutant.