5 resultados para statistical mechanics many-body inverse problem graph-theory
em National Center for Biotechnology Information - NCBI
Resumo:
A model of interdependent decision making has been developed to understand group differences in socioeconomic behavior such as nonmarital fertility, school attendance, and drug use. The statistical mechanical structure of the model illustrates how the physical sciences contain useful tools for the study of socioeconomic phenomena.
Resumo:
Experimental time series for a nonequilibrium reaction may in some cases contain sufficient data to determine a unique kinetic model for the reaction by a systematic mathematical analysis. As an example, a kinetic model for the self-assembly of microtubules is derived here from turbidity time series for solutions in which microtubules assemble. The model may be seen as a generalization of Oosawa's classical nucleation-polymerization model. It reproduces the experimental data with a four-stage nucleation process and a critical nucleus of 15 monomers.
Resumo:
How a reacting system climbs through a transition state during the course of a reaction has been an intriguing subject for decades. Here we present and quantify a technique to identify and characterize local invariances about the transition state of an N-particle Hamiltonian system, using Lie canonical perturbation theory combined with microcanonical molecular dynamics simulation. We show that at least three distinct energy regimes of dynamical behavior occur in the region of the transition state, distinguished by the extent of their local dynamical invariance and regularity. Isomerization of a six-atom Lennard–Jones cluster illustrates this: up to energies high enough to make the system manifestly chaotic, approximate invariants of motion associated with a reaction coordinate in phase space imply a many-body dividing hypersurface in phase space that is free of recrossings even in a sea of chaos. The method makes it possible to visualize the stable and unstable invariant manifolds leading to and from the transition state, i.e., the reaction path in phase space, and how this regularity turns to chaos with increasing total energy of the system. This, in turn, illuminates a new type of phase space bottleneck in the region of a transition state that emerges as the total energy and mode coupling increase, which keeps a reacting system increasingly trapped in that region.
Resumo:
The Biomolecular Interaction Network Database (BIND; http://binddb.org) is a database designed to store full descriptions of interactions, molecular complexes and pathways. Development of the BIND 2.0 data model has led to the incorporation of virtually all components of molecular mechanisms including interactions between any two molecules composed of proteins, nucleic acids and small molecules. Chemical reactions, photochemical activation and conformational changes can also be described. Everything from small molecule biochemistry to signal transduction is abstracted in such a way that graph theory methods may be applied for data mining. The database can be used to study networks of interactions, to map pathways across taxonomic branches and to generate information for kinetic simulations. BIND anticipates the coming large influx of interaction information from high-throughput proteomics efforts including detailed information about post-translational modifications from mass spectrometry. Version 2.0 of the BIND data model is discussed as well as implementation, content and the open nature of the BIND project. The BIND data specification is available as ASN.1 and XML DTD.
Resumo:
We present an overview of the statistical mechanics of self-organized criticality. We focus on the successes and failures of hydrodynamic description of transport, which consists of singular diffusion equations. When this description applies, it can predict the scaling features associated with these systems. We also identify a hard driving regime where singular diffusion hydrodynamics fails due to fluctuations and give an explicit criterion for when this failure occurs.