22 resultados para sphingosine-1-phosphate (S1P)

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endothelial-derived G-protein–coupled receptor EDG-1 is a high-affinity receptor for the bioactive lipid mediator sphingosine-1-phosphate (SPP). In the present study, we constructed the EDG-1–green fluorescent protein (GFP) chimera to examine the dynamics and subcellular localization of SPP–EDG-1 interaction. SPP binds to EDG-1–GFP and transduces intracellular signals in a manner indistinguishable from that seen with the wild-type receptor. Human embryonic kidney 293 cells stably transfected with the EDG-1–GFP cDNA expressed the receptor primarily on the plasma membrane. Exogenous SPP treatment, in a dose-dependent manner, induced receptor translocation to perinuclear vesicles with a τ1/2 of ∼15 min. The EDG-1–GFP–containing vesicles are distinct from mitochondria but colocalize in part with endocytic vesicles and lysosomes. Neither the low-affinity agonist lysophosphatidic acid nor other sphingolipids, ceramide, ceramide-1-phosphate, or sphingosylphosphorylcholine, influenced receptor trafficking. Receptor internalization was completely inhibited by truncation of the C terminus. After SPP washout, EDG-1–GFP recycles back to the plasma membrane with a τ1/2 of ∼30 min. We conclude that the high-affinity ligand SPP specifically induces the reversible trafficking of EDG-1 via the endosomal pathway and that the C-terminal intracellular domain of the receptor is critical for this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signaling pathways that couple tumor necrosis factor-α (TNFα) receptors to functional, especially inflammatory, responses have remained elusive. We report here that TNFα induces endothelial cell activation, as measured by the expression of adhesion protein E-selectin and vascular adhesion molecule-1, through the sphingosine kinase (SKase) signaling pathway. Treatment of human umbilical vein endothelial cells with TNFα resulted in a rapid SKase activation and sphingosine 1-phosphate (S1P) generation. S1P, but not ceramide or sphingosine, was a potent dose-dependent stimulator of adhesion protein expression. S1P was able to mimic the effect of TNFα on endothelial cells leading to extracellular signal-regulated kinases and NF-κB activation, whereas ceramide or sphingosine was not. Furthermore, N,N-dimethylsphingosine, an inhibitor of SKase, profoundly inhibited TNFα-induced extracellular signal-regulated kinases and NF-κB activation and adhesion protein expression. Thus we demonstrate that the SKase pathway through the generation of S1P is critically involved in mediating TNFα-induced endothelial cell activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis cyt1 mutants have a complex phenotype indicative of a severe defect in cell wall biogenesis. Mutant embryos arrest as wide, heart-shaped structures characterized by ectopic accumulation of callose and the occurrence of incomplete cell walls. Texture and thickness of the cell walls are irregular, and unesterified pectins show an abnormally diffuse distribution. To determine the molecular basis of these defects, we have cloned the CYT1 gene by a map-based approach and found that it encodes mannose-1-phosphate guanylyltransferase. A weak mutation in the same gene, called vtc1, has previously been identified on the basis of ozone sensitivity due to reduced levels of ascorbic acid. Mutant cyt1 embryos are deficient in N-glycosylation and have an altered composition of cell wall polysaccharides. Most notably, they show a 5-fold decrease in cellulose content. Characteristic aspects of the cyt1 phenotype, including radial swelling and accumulation of callose, can be mimicked with the inhibitor of N-glycosylation, tunicamycin. Our results suggest that N-glycosylation is required for cellulose biosynthesis and that a deficiency in this process can account for most phenotypic features of cyt1 embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity by 2-carboxyarabinitol 1-phosphate (CA1P) was investigated using gas-exchange analysis of antisense tobacco (Nicotiana tabacum) plants containing reduced levels of Rubisco activase. When an increase in light flux from darkness to 1200 μmol quanta m−2 s−1 was followed, the slow increase in CO2 assimilation by antisense leaves contained two phases: one represented the activation of the noncarbamylated form of Rubisco, which was described previously, and the other represented the activation of the CA1P-inhibited form of Rubisco. We present evidence supporting this conclusion, including the observation that this second phase, like CA1P, is only present following darkness or very low light flux. In addition, the second phase of CO2 assimilation was correlated with leaf CA1P content. When this novel phase was resolved from the CO2 assimilation trace, most of it was found to have kinetics similar to the activation of the noncarbamylated form of Rubisco. Additionally, kinetics of the novel phase indicated that the activation of the CA1P-inhibited form of Rubisco proceeds faster than the degradation of CA1P by CA1P phosphatase. These results may be significant with respect to current models of the regulation of Rubisco activity by Rubisco activase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to determine whether sphingosine and ceramide, second messengers derived from sphingolipid breakdown, alter kidney proximal tubular cell viability and their adaptive responses to further damage. Adult human kidney proximal tubular (HK-2) cells were cultured for 0-20 hr in the presence or absence of sphingosine, sphingosine metabolites (sphingosine 1-phosphate, dimethylsphingosine), or C2, C8, or C16 ceramide. Acute cell injury was assessed by vital dye exclusion and tetrazolium dye transport. Their subsequent impact on superimposed ATP depletion/Ca2+ ionophore-induced damage was also assessed. Sphingosine (> or = 10 microM), sphingosine 1-phosphate, dimethylsphingosine, and selected ceramides (C2 and C8, but not C16) each induced rapid, dose-dependent cytotoxicity. This occurred in the absence of DNA laddering or morphologic changes of apoptosis, suggesting a necrotic form of cell death. Prolonged exposure (20 hr) to subtoxic sphingosine doses (< or = 7.5 microM) induced substantial cytoresistance to superimposed ATP depletion/Ca2+ ionophore-mediated damage. Conversely, neither short-term sphingosine treatment (< or = 8.5 hr) nor 20-hr exposures to any of the above sphingosine/ceramide derivatives/metabolites or various free fatty acids reproduced this effect. Sphingosine-induced cytoresistance was dissociated from the extent of cytosolic Ca2+ loading (indo-1 fluorescence), indicating a direct increase in cell resistance to attack. We conclude that sphingosine can exert dual effects on proximal renal tubular viability: in high concentrations it induces cell necrosis, whereas in low doses it initiates a cytoresistant state. These results could be reproduced in human foreskin fibroblasts, suggesting broad-based relevance to the area of acute cell injury and repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate, LPA) is a multifunctional lipid mediator found in a variety of organisms that span the phylogenetic tree from humans to plants. Although its physiological function is not clearly understood, LPA is a potent regulator of mammalian cell proliferation; it is one of the major mitogens found in blood serum. In Xenopus laevis oocytes, LPA elicits oscillatory Cl− currents. This current, like other effects of LPA, is consistent with a plasma membrane receptor-mediated activation of G protein-linked signal transduction pathways. Herein we report the identification of a complementary DNA from Xenopus that encodes a functional high-affinity LPA receptor. The predicted structure of this protein of 372 amino acids contains features common to members of the seven transmembrane receptor superfamily with a predicted extracellular amino and intracellular carboxyl terminus. An antisense oligonucleotide derived from the first 5–11 predicted amino acids, selectively inhibited the expression of the endogenous high-affinity LPA receptors in Xenopus oocytes, whereas the same oligonucleotide did not affect the low-affinity LPA receptor. Expression of the full-length cRNA in oocytes led to an increase in maximal Cl− current due to increased expression of the high-affinity LPA receptor, but activation of the low-affinity receptor was, again, unaffected. Oocytes expressing cRNA prepared from this clone showed no response to other lipid mediators including prostaglandins, leukotrienes, sphingosine 1-phosphate, sphingosylphosphorylcholine, and platelet-activating factor, suggesting that the receptor is highly selective for LPA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD26 is a T cell activation antigen known to bind adenosine deaminase and have dipeptidyl peptidase IV activity. Cross-linking of CD26 and CD3 with immobilized mAbs can deliver a costimulatory signal that contributes to T cell activation. Our earlier studies revealed that cross-linking of CD26 induces its internalization, the phosphorylation of a number of proteins involved in the signaling pathway, and subsequent T cell proliferation. Although these findings suggest the importance of internalization in the function of CD26, CD26 has only 6 aa residues in its cytoplasmic region with no known motif for endocytosis. In the present study, we have identified the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGFIIR) as a binding protein for CD26 and that mannose 6-phosphate (M6P) residues in the carbohydrate moiety of CD26 are critical for this binding. Activation of peripheral blood T cells results in the mannose 6 phosphorylation of CD26. In addition, the cross-linking of CD26 with an anti-CD26 antibody induces not only capping and internalization of CD26 but also colocalization of CD26 with M6P/IGFIIR. Finally, both internalization of CD26 and the T cell proliferative response induced by CD26-mediated costimulation were inhibited by the addition of M6P, but not by glucose 6-phosphate or mannose 1-phosphate. These results indicate that internalization of CD26 after cross-linking is mediated in part by M6P/IGFIIR and that the interaction between mannose 6-phosphorylated CD26 and M6P/IGFIIR may play an important role in CD26-mediated T cell costimulatory signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fructose-1,6-bisphosphatase (Fru-1,6-Pase; D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) requires two divalent metal ions to hydrolyze alpha-D-fructose 1,6-bisphosphate. Although not required for catalysis, monovalent cations modify the enzyme activity; K+ and Tl+ ions are activators, whereas Li+ ions are inhibitors. Their mechanisms of action are still unknown. We report here crystallographic structures of pig kidney Fru-1,6-Pase complexed with K+, Tl+, or both Tl+ and Li+. In the T form Fru-1,6-Pase complexed with the substrate analogue 2,5-anhydro-D-glucitol 1,6-bisphosphate (AhG-1,6-P2) and Tl+ or K+ ions, three Tl+ or K+ binding sites are found. Site 1 is defined by Glu-97, Asp-118, Asp-121, Glu-280, and a 1-phosphate oxygen of AhG-1,6-P2; site 2 is defined by Glu-97, Glu-98, Asp-118, and Leu-120. Finally, site 3 is defined by Arg-276, Glu-280, and the 1-phosphate group of AhG-1,6-P2. The Tl+ or K+ ions at sites 1 and 2 are very close to the positions previously identified for the divalent metal ions. Site 3 is specific to K+ or Tl+. In the divalent metal ion complexes, site 3 is occupied by the guanidinium group of Arg-276. These observations suggest that Tl+ or K+ ions can substitute for Arg-276 in the active site and polarize the 1-phosphate group, thus facilitating nucleophilic attack on the phosphorus center. In the T form complexed with both Tl+ and Li+ ions, Li+ replaces Tl+ at metal site 1. Inhibition by lithium very likely occurs as it binds to this site, thus retarding turnover or phosphate release. The present study provides a structural basis for a similar mechanism of inhibition for inositol monophosphatase, one of the potential targets of lithium ions in the treatment of manic depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature lability of ADP-glucose pyrophosphorylase (AGP; glucose-1-phosphate adenylyltransferase; ADP: α-d-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27), a key starch biosynthetic enzyme, may play a significant role in the heat-induced loss in maize seed weight and yield. Here we report the isolation and characterization of heat-stable variants of maize endosperm AGP. Escherichia coli cells expressing wild type (WT) Shrunken2 (Sh2), and Brittle2 (Bt2) exhibit a reduced capacity to produce glycogen when grown at 42°C. Mutagenesis of Sh2 and coexpression with WT Bt2 led to the isolation of multiple mutants capable of synthesizing copious amounts of glycogen at this temperature. An increase in AGP stability was found in each of four mutants examined. Initial characterization revealed that the BT2 protein was elevated in two of these mutants. Yeast two-hybrid studies were conducted to determine whether the mutant SH2 proteins more efficiently recruit the BT2 subunit into tetramer assembly. These experiments showed that replacement of WT SH2 with the heat-stable SH2HS33 enhanced interaction between the SH2 and BT2 subunits. In agreement, density gradient centrifugation of heated and nonheated extracts from WT and one of the mutants, Sh2hs33, identified a greater propensity for heterotetramer dissociation in WT AGP. Sequencing of Sh2hs33 and several other mutants identified a His-to-Tyr mutation at amino acid position 333. Hence, a single point mutation in Sh2 can increase the stability of maize endosperm AGP through enhanced subunit interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinct phosphodiesterasic activity (EC 3.1.4) was found in both mono- and dicotyledonous plants that catalyzes the hydrolytic breakdown of ADPglucose (ADPG) to produce equimolar amounts of glucose-1-phosphate and AMP. The enzyme responsible for this activity, referred to as ADPG pyrophosphatase (AGPPase), was purified over 1,100-fold from barley leaves and subjected to biochemical characterization. The calculated Keq′ (modified equilibrium constant) value for the ADPG hydrolytic reaction at pH 7.0 and 25°C is 110, and its standard-state free-energy change value (ΔG′) is −2.9 kcal/mol (1 kcal = 4.18 kJ). Kinetic analyses showed that, although AGPPase can hydrolyze several low-molecular weight phosphodiester bond-containing compounds, ADPG proved to be the best substrate (Km = 0.5 mM). Pi and phosphorylated compounds such as 3-phosphoglycerate, PPi, ATP, ADP, NADP+, and AMP are inhibitors of AGPPase. Subcellular localization studies revealed that AGPPase is localized exclusively in the plastidial compartment of cultured cells of sycamore (Acer pseudoplatanus L.), whereas it occurs both inside and outside the plastid in barley endosperm. In this paper, evidence is presented that shows that AGPPase, whose activity declines concomitantly with the accumulation of starch during development of sink organs, competes with starch synthase (ADPG:1,4-α-d-glucan 4-α-d-glucosyltransferase; EC 2.4.1.21) for ADPG, thus markedly blocking the starch biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In salt-stressed ice plants (Mesembryanthemum crystallinum), sodium accumulates to high concentrations in vacuoles, and polyols (myo-inositol, d-ononitol, and d-pinitol) accumulate in the cytosol. Polyol synthesis is regulated by NaCl and involves induction and repression of gene expression (D.E. Nelson, B. Shen, and H.J. Bohnert [1998] Plant Cell 10: 753–764). In the study reported here we found increased phloem transport of myo-inositol and reciprocal increased transport of sodium and inositol to leaves under stress. To determine the relationship between increased translocation and sodium uptake, we analyzed the effects of exogenous application of myo-inositol: The NaCl-inducible ice plant myo-inositol 1-phosphate synthase is repressed in roots, and sodium uptake from root to shoot increases without stimulating growth. Sodium uptake and transport through the xylem was coupled to a 10-fold increase of myo-inositol and ononitol in the xylem. Seedlings of the ice plant are not salt-tolerant, and yet the addition of exogenous myo-inositol conferred upon them patterns of gene expression and polyol accumulation observed in mature, salt-tolerant plants. Sodium uptake and transport through the xylem was enhanced in the presence of myo-inositol. The results indicate an interdependence of sodium uptake and alterations in the distribution of myo-inositol. We hypothesize that myo-inositol could serve not only as a substrate for the production of compatible solutes but also as a leaf-to-root signal that promotes sodium uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH2-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.