20 resultados para specific mass
em National Center for Biotechnology Information - NCBI
Resumo:
Nanoflow electrospray ionization has been used to introduce intact Escherichia coli ribosomes into the ion source of a mass spectrometer. Mass spectra of remarkable quality result from a partial, but selective, dissociation of the particles within the mass spectrometer. Peaks in the spectra have been assigned to individual ribosomal proteins and to noncovalent complexes of up to five component proteins. The pattern of dissociation correlates strongly with predicted features of ribosomal protein–protein and protein–RNA interactions. The spectra allow the dynamics and state of folding of specific proteins to be investigated in the context of the intact ribosome. This study demonstrates a potentially general strategy to probe interactions within complex biological assemblies.
Resumo:
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the import of triglyceride-derived fatty acids by muscle, for utilization, and adipose tissue (AT), for storage. Relative ratios of LPL expression in these two tissues have therefore been suggested to determine body mass composition as well as play a role in the initiation and/or development of obesity. To test this, LPL knockout mice were mated to transgenics expressing LPL under the control of a muscle-specific promoter (MCK) to generate induced mutants with either relative (L2-MCK) or absolute AT LPL deficiency (L0-MCK). L0-MCK mice had normal weight gain and body mass composition. However, AT chemical composition indicated that LPL deficiency was compensated for by large increases in endogenous AT fatty acid synthesis. Histological analysis confirmed that such up-regulation of de novo fatty acid synthesis in L0-MCK mice could produce normal amounts of AT as early as 20 h after birth. To assess the role of AT LPL during times of profound weight gain, L0-MCK and L2-MCK genotypes were compared on the obese ob/ob background. ob/ob mice rendered deficient in AT LPL (L0-MCK-ob/ob) also demonstrated increased endogenous fatty acid synthesis but had diminished weight and fat mass. These findings reveal marked alterations in AT metabolism that occur during LPL deficiency and provide strong evidence for a role of AT LPL in one type of genetic obesity.
Resumo:
Isoprostanes (iPs) are free radical catalyzed prostaglandin isomers. Analysis of individual isomers of PGF2α—F2-iPs—in urine has reflected lipid peroxidation in humans. However, up to 64 F2-iPs may be formed, and it is unknown whether coordinate generation, disposition, and excretion of F2-iPs occurs in humans. To address this issue, we developed methods to measure individual members of the four structural classes of F2-iPs, using liquid chromatography/tandem mass spectrometry (LC/MS/MS), in which sample preparation is minimized. Authentic standards of F2-iPs of classes III, IV, V, and VI were used to identify class-specific ions for multiple reaction monitoring. Using iPF2α-VI as a model compound, we demonstrated the reproducibility of the assay in human urine. Urinary levels of all F2-iPs measured were elevated in patients with familial hypercholesterolemia. However, only three of eight F2-iPs were elevated in patients with congestive heart failure, compared with controls. Paired analyses by GC/MS and LC/MS/MS of iPF2α-VI in hypercholesterolemia and of 8,12-iso-iPF2α-VI in congestive heart failure were highly correlated. This approach will permit high throughput analysis of multiple iPs in human disease.
Resumo:
A member of the phosphodiesterase (PDE)7 family with high affinity and specificity for cAMP has been identified. Based on sequence homologies, we designate this PDE as PDE7B. The full-length cDNA of PDE7B is 2399 bp, and its ORF sequence predicts a protein of 446 amino acids with a molecular mass of 50.1 kDa. Comparison of the predicted protein sequences of PDE7A and PDE7B reveals an identity of 70% in the catalytic domain. Northern blotting indicates that the mRNA of PDE7B is 5.6 kb. It is most highly expressed in pancreas followed by brain, heart, thyroid, skeletal muscle, eye, ovary, submaxillary gland, epididymus, and liver. Recombinant PDE7B protein expressed in a Baculovirus expression system is specific for cAMP with a Km of 0.03 μM. Within a series of common PDE inhibitors, it is most potently inhibited by 3-isobutyl-1-methylxanthine with an IC50 of 2.1 μM. It is also inhibited by papaverine, dipyridamole, and SCH51866 at higher doses. PDE7A and PDE7B exhibit the same general pattern of inhibitor specificity among the several drugs tested. However, differences in IC50 for some of the drugs suggest that isozyme selective inhibitors can be developed.
Resumo:
An approach to analyzing single-nucleotide polymorphisms (SNPs) found in the human genome has been developed that couples a recently developed invasive cleavage assay for nucleic acids with detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The invasive cleavage assay is a signal amplification method that enables the analysis of SNPs by MALDI-TOF MS directly from human genomic DNA without the need for initial target amplification by PCR. The results presented here show the successful genotyping by this approach of twelve SNPs located randomly throughout the human genome. Conventional Sanger sequencing of these SNP positions confirmed the accuracy of the MALDI-TOF MS analysis results. The ability to unambiguously detect both homozygous and heterozygous genotypes is clearly demonstrated. The elimination of the need for target amplification by PCR, combined with the inherently rapid and accurate nature of detection by MALDI-TOF MS, gives this approach unique and significant advantages in the high-throughput genotyping of large numbers of SNPs, useful for locating, identifying, and characterizing the function of specific genes.
Resumo:
Desaturation of coenzyme-A esters of saturated fatty acids is a common feature of sex pheromone biosynthetic pathways in the Lepidoptera. The enzymes that catalyze this step share several biochemical properties with the ubiquitous acyl-CoA Δ9-desaturases of animals and fungi, suggesting a common ancestral origin. Unlike metabolic acyl-CoA Δ9-desaturases, pheromone desaturases have evolved unusual regio- and stereoselective activities that contribute to the remarkable diversity of chemical structures used as pheromones in this large taxonomic group. In this report, we describe the isolation of a cDNA encoding a pheromone gland desaturase from the cabbage looper moth, Trichoplusia ni, a species in which all unsaturated pheromone products are produced via a Δ11Z-desaturation mechanism. The largest ORF of the ≈1,250-bp cDNA encodes a 349-aa apoprotein (PDesat-Tn Δ11Z) with a predicted molecular mass of 40,240 Da. Its hydrophobicity profile is similar overall to those of rat and yeast Δ9-desaturases, suggesting conserved transmembrane topology. A 182-aa core domain delimited by conserved histidine-rich motifs implicated in iron-binding and catalysis has 72 and 58% similarity (including conservative substitutions) to acyl-CoA Δ9Z-desaturases of rat and yeast, respectively. Northern blot analysis revealed an ≈1,250-nt PDesat-Tn Δ11Z mRNA that is consistent with the spatial and temporal distribution of Δ11-desaturase enzyme activity. Genetic transformation of a desaturase-deficient strain of the yeast Saccharomyces cerevisiae with an expression plasmid encoding PDesat-Tn Δ11Z resulted in complementation of the strain’s fatty acid auxotrophy and the production of Δ11Z-unsaturated fatty acids.
Resumo:
Since the advent of matrix-assisted laser desorption/ionization and electrospray ionization, mass spectrometry has played an increasingly important role in protein functional characterization, identification, and structural analysis. Expanding this role, desorption/ionization on silicon (DIOS) is a new approach that allows for the analysis of proteins and related small molecules. Despite the absence of matrix, DIOS-MS yields little or no fragmentation and is relatively tolerant of moderate amounts of contaminants commonly found in biological samples. Here, functional assays were performed on an esterase, a glycosidase, a lipase, as well as exo- and endoproteases by using enzyme-specific substrates. Enzyme activity also was monitored in the presence of inhibitors, successfully demonstrating the ability of DIOS to be used as an inhibitor screen. Because DIOS is a matrix-free desorption technique, it also can be used as a platform for multiple analyses to be performed on the same protein. This unique advantage was demonstrated with acetylcholine esterase for qualitative and quantitative characterization and also by its subsequent identification directly from the DIOS platform.
Resumo:
Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.
Resumo:
In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.
Resumo:
The aim of the present study is to determine the chemical structure and conformation of DNA adducts formed by incubation of the bioactive form of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-acetoxy-PhIP, with a single-stranded 11mer oligodeoxyribonucleotide. Using conditions optimized to give the C8-dG-PhIP adduct as the major product, sufficient material was synthesized for NMR solution structure determination. The NMR data indicate that in duplex DNA this adduct exists in equilibrium between two different conformational states. In the main conformer, the covalently bound PhIP molecule intercalates in the helix, whilst in the minor conformation the PhIP ligand is probably solvent exposed. In addition to the C8-dG-PhIP adduct, at least eight polar adducts are found after reaction of N-acetoxy-PhIP with the oligonucleotide. Three of these were purified for further characterization and shown to exhibit lowest energy UV absorption bands in the range 342–347 nm, confirming the presence of PhIP or PhIP derivative. Accurate mass determination of two of the polar adducts by negative ion MALDI-TOF MS revealed ions consistent with a spirobisguanidino-PhIP derivative and a ring-opened adduct. The third adduct, which has the same mass as the C8-dG-PhIP oligonucleotide adduct, may contain PhIP bound to the N2 position of guanine.
Resumo:
The class I major histocompatibility complex (MHC) glycoprotein HLA-B27 binds short peptides containing arginine at peptide position 2 (P2). The HLA-B27/peptide complex is recognized by T cells both as part of the development of the repertoire of T cells in the cellular immune system and during activation of cytotoxic T cells. Based on the three-dimensional structure of HLA-B27, we have synthesized a ligand with an aziridine-containing side chain designed to mimic arginine and to bind covalently in the arginine-specific P2 pocket of HLA-B27. Using tryptic digestion followed by mass spectrometry and amino acid sequencing, the aziridine-containing ligand is shown to alkylate specifically cysteine 67 of HLA-B27. Neither free cysteine in solution nor an exposed cysteine on a class II MHC molecule can be alkylated, showing that specific recognition between the anchor side-chain pocket of an MHC class I protein and the designed ligand (propinquity) is necessary to induce the selective covalent reaction with the MHC class I molecule.
Resumo:
Nonobese diabetic mice spontaneously develop diabetes that is caused by autoimmune cell-mediated destruction of pancreatic beta cells. Here we report that surgical removal of 90% of pancreatic tissue before onset of insulitis induced a long-term diabetes-free condition in nonobese diabetic mice. Pancreatectomy after development of moderate insulitis had no effect on the course of diabetes. The effect of pancreatectomy was abrogated with subsequent development of diabetes by infusion of islet-cell-specific T lymphocytes and by transplantation of pancreatic islets. Lymphocytes from pancreatectomized diabetes-free mice exhibited low response to islet cells but responded normally to alloantigens. These results suggest that the islet cell mass plays a critical role in development of autoimmune diabetes.
Resumo:
The 5' noncoding region of poliovirus RNA contains an internal ribosome entry site (IRES) for cap-independent initiation of translation. Utilization of the IRES requires the participation of one or more cellular proteins that mediate events in the translation initiation reaction, but whose biochemical roles have not been defined. In this report, we identify a cellular RNA binding protein isolated from the ribosomal salt wash of uninfected HeLa cells that specifically binds to stem-loop IV, a domain located in the central part of the poliovirus IRES. The protein was isolated by specific RNA affinity chromatography, and 55% of its sequence was determined by automated liquid chromatography-tandem mass spectrometry. The sequence obtained matched that of poly(rC) binding protein 2 (PCBP2), previously identified as an RNA binding protein from human cells. PCBP2, as well as a related protein, PCBP1, was over-expressed in Escherichia coli after cloning the cDNAs into an expression plasmid to produce a histidine-tagged fusion protein. Specific interaction between recombinant PCBP2 and poliovirus stem-loop IV was demonstrated by RNA mobility shift analysis. The closely related PCBP1 showed no stable interaction with the RNA. Stem-loop IV RNA containing a three nucleotide insertion that abrogates translation activity and virus viability was unable to bind PCBP2.
Resumo:
Molecular and fragment ion data of intact 8- to 43-kDa proteins from electrospray Fourier-transform tandem mass spectrometry are matched against the corresponding data in sequence data bases. Extending the sequence tag concept of Mann and Wilm for matching peptides, a partial amino acid sequence in the unknown is first identified from the mass differences of a series of fragment ions, and the mass position of this sequence is defined from molecular weight and the fragment ion masses. For three studied proteins, a single sequence tag retrieved only the correct protein from the data base; a fourth protein required the input of two sequence tags. However, three of the data base proteins differed by having an extra methionine or by missing an acetyl or heme substitution. The positions of these modifications in the protein examined were greatly restricted by the mass differences of its molecular and fragment ions versus those of the data base. To characterize the primary structure of an unknown represented in the data base, this method is fast and specific and does not require prior enzymatic or chemical degradation.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) time of flight mass spectrometry was used to detect and order DNA fragments generated by Sanger dideoxy cycle sequencing. This was accomplished by improving the sensitivity and resolution of the MALDI method using a delayed ion extraction technique (DE-MALDI). The cycle sequencing chemistry was optimized to produce as much as 100 fmol of each specific dideoxy terminated fragment, generated from extension of a 13-base primer annealed on 40- and 50-base templates. Analysis of the resultant sequencing mixture by DE-MALDI identified the appropriate termination products. The technique provides a new non-gel-based method to sequence DNA which may ultimately have considerable speed advantages over traditional methodologies.