10 resultados para spatially explicit

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identifying the types and distributions of organic substrates that support microbial activities around plant roots is essential for a full understanding of plant–microbe interactions and rhizosphere ecology. We have constructed a strain of the soil bacterium Sinorhizobium meliloti containing a gfp gene fused to the melA promoter which is induced on exposure to galactose and galactosides. We used the fusion strain as a biosensor to determine that galactosides are released from the seeds of several different legume species during germination and are also released from roots of alfalfa seedlings growing on artificial medium. Galactoside presence in seed wash and sterile root washes was confirmed by HPLC. Experiments examining microbial growth on α-galactosides in seed wash suggested that α-galactoside utilization could play an important role in supporting growth of S. meliloti near germinating seeds of alfalfa. When inoculated into microcosms containing legumes or grasses, the biosensor allowed us to visualize the localized presence of galactosides on and around roots in unsterilized soil, as well as the grazing of fluorescent bacteria by protozoa. Galactosides were present in patches around zones of lateral root initiation and around roots hairs, but not around root tips. Such biosensors can reveal intriguing aspects of the environment and the physiology of the free-living soil S. meliloti before and during the establishment of nodulation, and they provide a nondestructive, spatially explicit method for examining rhizosphere soil chemical composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mass extinctions have played many evolutionary roles, involving differential survivorship or selectivity of taxa and traits, the disruption or preservation of evolutionary trends and ecosystem organization, and the promotion of taxonomic and morphological diversifications—often along unexpected trajectories—after the destruction or marginalization of once-dominant clades. The fossil record suggests that survivorship during mass extinctions is not strictly random, but it often fails to coincide with factors promoting survival during times of low extinction intensity. Although of very serious concern, present-day extinctions have not yet achieved the intensities seen in the Big Five mass extinctions of the geologic past, which each removed ≥50% of the subset of relatively abundant marine invertebrate genera. The best comparisons for predictive purposes therefore will involve factors such as differential extinction intensities among regions, clades, and functional groups, rules governing postextinction biotic interchanges and evolutionary dynamics, and analyses of the factors that cause taxa and evolutionary trends to continue unabated, to suffer setbacks but resume along the same trajectory, to survive only to fall into a marginal role or disappear (“dead clade walking”), or to undergo a burst of diversification. These issues need to be addressed in a spatially explicit framework, because the fossil record suggests regional differences in postextinction diversification dynamics and biotic interchanges. Postextinction diversifications lag far behind the initial taxonomic and morphological impoverishment and homogenization; they do not simply reoccupy vacated adaptive peaks, but explore opportunities as opened and constrained by intrinsic biotic factors and the ecological and evolutionary context of the radiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systematic conservation planning is a branch of conservation biology that seeks to identify spatially explicit options for the preservation of biodiversity. Alternative systems of conservation areas are predictions about effective ways of promoting the persistence of biodiversity; therefore, they should consider not only biodiversity pattern but also the ecological and evolutionary processes that maintain and generate species. Most research and application, however, has focused on pattern representation only. This paper outlines the development of a conservation system designed to preserve biodiversity pattern and process in the context of a rapidly changing environment. The study area is the Cape Floristic Region (CFR), a biodiversity hotspot of global significance, located in southwestern Africa. This region has experienced rapid (post-Pliocene) ecological diversification of many plant lineages; there are numerous genera with large clusters of closely related species (flocks) that have subdivided habitats at a very fine scale. The challenge is to design conservation systems that will preserve both the pattern of large numbers of species and various natural processes, including the potential for lineage turnover. We outline an approach for designing a system of conservation areas to incorporate the spatial components of the evolutionary processes that maintain and generate biodiversity in the CFR. We discuss the difficulty of assessing the requirements for pattern versus process representation in the face of ongoing threats to biodiversity, the difficulty of testing the predictions of alternative conservation systems, and the widespread need in conservation planning to incorporate and set targets for the spatial components (or surrogates) of processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propagation of discharges in cortical and thalamic systems, which is used as a probe for examining network circuitry, is studied by constructing a one-dimensional model of integrate-and-fire neurons that are coupled by excitatory synapses with delay. Each neuron fires only one spike. The velocity and stability of propagating continuous pulses are calculated analytically. Above a certain critical value of the constant delay, these pulses lose stability. Instead, lurching pulses propagate with discontinuous and periodic spatio-temporal characteristics. The parameter regime for which lurching occurs is strongly affected by the footprint (connectivity) shape; bistability may occur with a square footprint shape but not with an exponential footprint shape. For strong synaptic coupling, the velocity of both continuous and lurching pulses increases logarithmically with the synaptic coupling strength gsyn for an exponential footprint shape, and it is bounded for a step footprint shape. We conclude that the differences in velocity and shape between the front of thalamic spindle waves in vitro and cortical paroxysmal discharges stem from their different effective delay; in thalamic networks, large effective delay between inhibitory neurons arises from their effective interaction via the excitatory cells which display postinhibitory rebound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autocrine ligands are important regulators of many normal tissues and have been implicated in a number of disease states, including cancer. However, because by definition autocrine ligands are synthesized, secreted, and bound to cell receptors within an intrinsically self-contained “loop,” standard pharmacological approaches cannot be used to investigate relationships between ligand/receptor binding and consequent cellular responses. We demonstrate here a new approach for measurement of autocrine ligand binding to cells, using a microphysiometer assay originally developed for investigating cell responses to exogenous ligands. This technique permits quantitative measurements of autocrine responses on the time scale of receptor binding and internalization, thus allowing investigation of the role of receptor trafficking and dynamics in cellular responses. We used this technique to investigate autocrine signaling through the epidermal growth factor receptor by transforming growth factor alpha (TGFα) and found that anti-receptor antibodies are far more effective than anti-ligand antibodies in inhibiting autocrine signaling. This result indicates that autocrine-based signals can operate in a spatially restricted, local manner and thus provide cells with information on their local microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally accepted that globular proteins fold with a hydrophobic core and a hydrophilic exterior. Might the spatial distribution of amino acid hydrophobicity exhibit common features? The hydrophobic profile detailing this distribution from the protein interior to exterior has been examined for 30 relatively diverse structures obtained from the Protein Data Bank, for 3 proteins of the 30S ribosomal subunit, and for a simple set of 14 decoys. A second-order hydrophobic moment has provided a simple measure of the spatial variation. Shapes of the calculated spatial profiles of all native structures have been found to be comparable. Consequently, profile shapes as well as particular profile features should assist in validating predicted protein structures and in discriminating between different protein-folding pathways. The spatial profiles of the 14 decoys are clearly distinguished from the profiles of their native structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is given for determining the time course and spatial extent of consistently and transiently task-related activations from other physiological and artifactual components that contribute to functional MRI (fMRI) recordings. Independent component analysis (ICA) was used to analyze two fMRI data sets from a subject performing 6-min trials composed of alternating 40-sec Stroop color-naming and control task blocks. Each component consisted of a fixed three-dimensional spatial distribution of brain voxel values (a “map”) and an associated time course of activation. For each trial, the algorithm detected, without a priori knowledge of their spatial or temporal structure, one consistently task-related component activated during each Stroop task block, plus several transiently task-related components activated at the onset of one or two of the Stroop task blocks only. Activation patterns occurring during only part of the fMRI trial are not observed with other techniques, because their time courses cannot easily be known in advance. Other ICA components were related to physiological pulsations, head movements, or machine noise. By using higher-order statistics to specify stricter criteria for spatial independence between component maps, ICA produced improved estimates of the temporal and spatial extent of task-related activation in our data compared with principal component analysis (PCA). ICA appears to be a promising tool for exploratory analysis of fMRI data, particularly when the time courses of activation are not known in advance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human functional neuroimaging techniques provide a powerful means of linking neural level descriptions of brain function and cognition. The exploration of the functional anatomy underlying human memory comprises a prime example. Three highly reliable findings linking memory-related cognitive processes to brain activity are discussed. First, priming is accompanied by reductions in the amount of neural activation relative to naive or unprimed task performance. These reductions can be shown to be both anatomically and functionally specific and are found for both perceptual and conceptual task components. Second, verbal encoding, allowing subsequent conscious retrieval, is associated with activation of higher order brain regions including areas within the left inferior and dorsal prefrontal cortex. These areas also are activated by working memory and effortful word generation tasks, suggesting that these tasks, often discussed as separable, might rely on interdependent processes. Finally, explicit (intentional) retrieval shares much of the same functional anatomy as the encoding and word generation tasks but is associated with the recruitment of additional brain areas, including the anterior prefrontal cortex (right > left). These findings illustrate how neuroimaging techniques can be used to study memory processes and can both complement and extend data derived through other means. More recently developed methods, such as event-related functional MRI, will continue this progress and may provide additional new directions for research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type I and II receptors for the transforming growth factor beta (TGF-beta) are transmembrane serine/threonine kinases that are essential for TGF-beta signaling. However, little is known about their in vivo substrates or signal transduction pathways. To determine the substrate specificity of these kinases, we developed combinatorial peptide libraries synthesized on a hydrophilic matrix that is easily accessible to proteins in aqueous solutions. When we subjected these libraries to phosphorylation by the cAMP-dependent protein kinase, we obtained the optimal peptide sequence RRXS (I/L/V), in perfect agreement with the substrate sequence deduced from mutagenesis and crystal structure analyses. By using the same libraries, we showed that the optimal substrate peptide for both the type I and II TGF-beta receptors was KKKKKK(S/T)XXX. Since the two kinases are thought to play different roles in intracellular signal transduction, it was a surprise to find that they have almost identical substrate specificity. Our method is direct, sensitive, and simple and provides information about the kinase specificity for all the amino acid residues at each position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the sea urchin embryo, the lineage founder cells whose polyclonal progenies will give rise to five different territories are segregated at the sixth division. To investigate the mechanisms by which the fates of embryonic cells are first established, we looked for temporal and spatial expression of homeobox genes in the very early cleavage embryos. We report evidence that PlHbox12, a paired homeobox-containing gene, is expressed in the embryo from the 4-cell stage. The abundance of the transcripts reaches its maximum when the embryo has been divided into the five polyclonal territories--namely at the 64-cell stage--and it abruptly declines at later stages of development. Blastomere dissociation experiments indicate that maximal expression of PlHbox12 is dependent on intercellular interactions, thus suggesting that signal transduction mechanisms are responsible for its transcriptional activation in the early cleavage embryo. Spatial expression of PlHbox12 was determined by whole-mount in situ hybridization. PlHbox12 transcripts in embryos at the fourth, fifth, and sixth divisions seem to be restricted to the conditionally specified ectodermal lineages. These results suggest a possible role of the PlHbox12 gene in the early events of cell specification of the presumptive ectodermal territories.