2 resultados para sovereign linkages

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depolymerization of polysaccharides, particularly those containing acid-sensitive components, into intact constituent repeating units can be very difficult. We describe a method using ozonolysis for depolymerizing polysaccharides containing β-d-aldosidic linkages into short-chain polysaccharides and oligosaccharides. This method is carried out on polysaccharides that have been fully acetylated whereby β-d-aldosidic linkages are selectively oxidized by ozone to form esters, from which the polysaccharides are subsequently cleaved with a nucleophile. Ozone oxidation of aldosidic linkages proceeds under strong stereoelectronic control, and reaction rates depend on the conformations of glycosidic linkages. Thus, β-d-aldosidic linkages with different conformations can have very different reaction rates even in the absence of substantial chemical differences. These rate differences allowed for very high selectivity in cleaving β-d-linkages of polysaccharides. Several polysaccharides from group B Streptococcus and other bacterial species were selectively depolymerized with this method. The repeating units of the group B Streptococcus polysaccharides all contain an acid-sensitive sialic acid residue in a terminal position on a side chain and several β-d-residues including galactose, glucose, and N-acetylglucosamine; however, with each polysaccharide, one type of linkage was more reactive than others. Selective cleavage of the most sensitive linkage occurs randomly throughout the polymer chain, yielding fragments of controllable and narrowly distributed sizes and the same repeating-unit structure. The average size of the molecules decreases exponentially, and desired sizes can be obtained by stopping the reaction at appropriate time points. With this method the labile sialic acid residue was not affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cadherin-catenin complex is important for mediating homotypic, calcium-dependent cell-cell interactions in diverse tissue types. Although proteins of this complex have been identified, little is known about their interactions. Using a genetic assay in yeast and an in vitro protein-binding assay, we demonstrate that beta-catenin is the linker protein between E-cadherin and alpha-catenin and that E-cadherin does not bind directly to alpha-catenin. We show that a 25-amino acid sequence in the cytoplasmic domain of E-cadherin and the amino-terminal domain of alpha-catenin are independent binding sites for beta-catenin. In addition to beta-catenin and plakoglobin, another member of the armadillo family, p120 binds to E-cadherin. However, unlike beta-catenin, p120 does not bind alpha-catenin in vitro, although a complex of p120 and endogenous alpha-catenin could be immunoprecipitated from cell extracts. In vitro protein-binding assays using recombinant E-cadherin cytoplasmic domain and alpha-catenin revealed two catenin pools in cell lysates: an approximately 1000- to approximately 2000-kDa complex bound to E-cadherin and an approximately 220-kDa pool that did not contain E-cadherin. Only beta-catenin in the approximately 220-kDa pool bound exogenous E-cadherin. Delineation of these molecular linkages and the demonstration of separate pools of catenins in different cell lines provide a foundation for examining regulatory mechanisms involved in the assembly and function of the cadherin-catenin complex.