42 resultados para soluble cytokine receptors

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leptin receptor (OB-R) is a single membrane-spanning protein that mediates the weight regulatory effects of leptin (OB protein). The mutant allele (db) of the OB-R gene encodes a protein with a truncated cytoplasmic domain that is predicted to be functionally inactive. Several mRNA splice variants encoding OB-Rs with different length cytoplasmic domains have been detected in various tissues. Here we demonstrate that the full-length OB-R (predominantly expressed in the hypothalamus), but not a major naturally occurring truncated form or a mutant from found in db/db mice, can mediate activation of signal transducer and activator of transcription (STAT) proteins and stimulate transcription through interleukin 6 responsive gene elements. Reconstitution experiments suggest that, although OB-R mediates intracellular signals with a specificity similar to interleukin 6-type cytokine receptors, signaling appears to be independent of the gp130 signal transducing component of the interleukin 6-type cytokine receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin (IL) 2 signaling requires the dimerization of the IL-2 receptor beta (IL-2R beta) and common gamma (gamma c) chains. The gamma is also a component of the receptors for IL-4, IL-7, and IL-9. To assess the extent and role of the receptor signal transducing system utilizing the gamma c chain on human intestinal epithelial cells, the expression of gamma c, IL-2R beta, and receptor chains specific for IL-4, IL-7, and IL-9 was assessed by reverse transcription-coupled PCR on human intestinal epithelial cell lines and on isolated primary human intestinal epithelial cells. Caco-2, HT-29, and T-84 cells were found to express transcripts for the gamma c and IL-4R chains constitutively. IL-2R beta chain expression was demonstrated in Caco-2 and HT-29 but not in T-84 cells. None of the cell lines expressed mRNA for the IL-2R alpha chain. After stimulation with epidermal growth factor for 24 h Caco-2, HT-29, and T-84 cells expressed transcripts for IL-7R. In addition, Caco-2 and HT-29 cells expressed mRNA for the IL-9R. Receptors for IL-2, IL-4, IL-7, and IL-9 on intestinal epithelial cells lines appeared to be functional; stimulation with these cytokines caused rapid tyrosine phosphorylation of proteins. The relevance of the observations in intestinal epithelial cell lines for intestinal epithelial function in vivo was supported by the demonstration of transcripts for gamma c, IL-2R beta, IL-4R, IL-7R, and IL-9R in primary human intestinal epithelial cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Erythropoietin (EPO) is required for red blood cell development, but whether EPO-specific signals directly instruct erythroid differentiation is unknown. We used a dominant system in which constitutively active variants of the EPO receptor were introduced into erythroid progenitors in mice. Chimeric receptors were constructed by replacing the cytoplasmic tail of constitutively active variants of the EPO receptor with tails of diverse cytokine receptors. Receptors linked to granulocyte or platelet production supported complete erythroid development in vitro and in vivo, as did the growth hormone receptor, a nonhematopoietic receptor. Therefore, EPOR-specific signals are not required for terminal differentiation of erythrocytes. Furthermore, we found that cellular context can influence cytokine receptor signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SOCS-1, a member of the suppressor of cytokine signaling (SOCS) family, was identified in a genetic screen for inhibitors of interleukin 6 signal transduction. SOCS-1 transcription is induced by cytokines, and the protein binds and inhibits Janus kinases and reduces cytokine-stimulated tyrosine phosphorylation of signal transducers and activators of transcription 3 and the gp130 component of the interleukin 6 receptor. Thus, SOCS-1 forms part of a feedback loop that modulates signal transduction from cytokine receptors. To examine the role of SOCS-1 in vivo, we have used gene targeting to generate mice lacking this protein. SOCS-1−/− mice exhibited stunted growth and died before weaning with fatty degeneration of the liver and monocytic infiltration of several organs. In addition, the thymus of SOCS-1−/− mice was reduced markedly in size, and there was a progressive loss of maturing B lymphocytes in the bone marrow, spleen, and peripheral blood. Thus, SOCS-1 is required for in vivo regulation of multiple cell types and is indispensable for normal postnatal growth and survival.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Macrophage stimulating protein (MSP), also known as hepatocyte growth factor-like, is a soluble cytokine that belongs to the family of the plasminogen-related growth factors (PRGFs). PRGFs are α/β heterodimers that bind to transmembrane tyrosine kinase receptors. MSP was originally isolated as a chemotactic factor for peritoneal macrophages. Through binding to its receptor, encoded by the RON gene, it stimulates dissociation of epithelia and works as an inflammatory mediator by repressing the production of nitric oxide (NO). Here, we identify a novel role for MSP in the central nervous system. As a paradigm to analyze this function we chose the hypoglossal system of adult mice. We demonstrate in vivo that either administration of exogenous MSP or transplantation of MSP-producing cells at the proximal stump of the resected nerve is sufficient to prevent motoneuron atrophy upon axotomy. We also show that the MSP gene is expressed in the tongue, the target of the hypoglossal nerve, and that MSP induces biosynthesis of Ron receptor in the motoneuron somata. Finally, we show that MSP suppresses NO production in the injured hypoglossal nuclei. Together, these data suggest that MSP is a novel neurotrophic factor for cranial motoneurons and, by regulating the production of NO, may have a role in brain plasticity and regeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many hormone and cytokine receptors are crosslinked by their specific ligands, and multimerization is an essential step leading to the generation of a signal. In the case of the tumor necrosis factor (TNF) receptors (TNF-Rs), antibody-induced crosslinking is sufficient to trigger a cytolytic effect. However, the quaternary structural requirements for signaling--i.e., the formation of dimers, trimers, or higher-order multimers--have remained obscure. Moreover, it has not been clear whether the 55-kDa or 75-kDa TNF-R is responsible for initiation of cytolysis. We reasoned that an obligate receptor dimer, targeted to the plasma membrane, might continuously signal the presence of TNF despite the actual absence of the ligand. Such a molecule, inserted into an appropriate vector, could be used to project receptor-specific "TNF-like" activity to specific cells and tissues in vivo. Accordingly, we constructed sequences encoding chimeric receptors in which the extracellular domain of the mouse erythropoietin receptor (Epo-R) was fused to the "stem," transmembrane domain, and cytoplasmic domain of the two mouse TNF-Rs. Thus, the Epo-R group was used to drive dimerization of the TNF-R cytoplasmic domain. These chimeric proteins were well expressed in a variety of cell lines and bound erythropoietin at the cell surface. Both the 55-kDa and the 75-kDa Epo/TNF-R chimeras exerted a constitutive cytotoxic effect detected by cotransfection or clonogenic assay. Thus, despite the lack of structural homology between the cytoplasmic domains of the two TNF-Rs, a similar signaling endpoint was observed. Moreover, dimerization (rather than trimerization or higher-order multimerization) was sufficient for elicitation of a biological response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Tec family of tyrosine kinases are involved in signals emanating from cytokine receptors, antigen receptors, and other lymphoid cell surface receptors. One family member, ITK (inducible T cell kinase), is involved in T cell activation and can be activated by the T cell receptor and the CD28 cell surface receptor. This stimulation of tyrosine phosphorylation and activation of ITK can be mimicked by the Src family kinase Lck. We have explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that coexpression of ITK and Src results in increased membrane association, tyrosine phosphorylation and activation of ITK, which could be blocked by inhibitors of the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase) as well as overexpression of the p85 subunit of PI 3-kinase. Removal of the Pleckstrin homology domain (PH) of ITK resulted in a kinase that could no longer be induced to localize to the membrane or be activated by Src. The PH of ITK was also able to bind inositol phosphates phosphorylated at the D3 position. Membrane targeting of ITK without the PH recovered its ability to be activated by Src. These results suggest that ITK can be activated by a combination of Src and PI 3-kinase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytokines are critically important for the growth and development of a variety of cells. Janus kinases (JAKs) associate with cytokine receptors and are essential for transmitting downstream cytokine signals. However, the regulation of the enzymatic activity of the JAKs is not well understood. Here, we investigated the role of tyrosine phosphorylation of JAK3 in regulating its kinase activity by analyzing mutations of tyrosine residues within the putative activation loop of the kinase domain. Specifically, tyrosine residues 980 and 981 of JAK3 were mutated to phenylalanine individually or doubly. We found that JAK3 is autophosphorylated on multiple sites including Y980 and Y981. Compared with the activity of wild-type (WT) JAK3, mutant Y980F demonstrated markedly decreased kinase activity, and optimal phosphorylation of JAK3 on other sites was dependent on Y980 phosphorylation. The mutant Y980F also exhibited reduced phosphorylation of its substrates, γc and STAT5A. In contrast, mutant Y981F had greatly increased kinase activity, whereas the double mutant, YY980/981FF, had intermediate activity. These results indicate that Y980 positively regulates JAK3 kinase activity whereas Y981 negatively regulates JAK3 kinase activity. These observations in JAK3 are similar to the findings in the kinase that is closely related to the JAK family, ZAP-70; mutations of tyrosine residues within the putative activation loop of ZAP-70 also have opposing actions. Thus, it will be important to determine whether this feature of regulation is unique to JAK3 or if it is also a feature of other JAKs. Given the importance of JAKs and particularly JAK3, it will be critical to fully dissect the positive and negative regulatory function of these and other tyrosine residues in the control of kinase activity and hence cytokine signaling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals by cAMP, the calcium ionophore ionomycin, and granulocyte/macrophage colony-stimulating factor. Jak1 kinase activity, interleukin 6-induced gene activation, Stat3 tyrosine phosphorylation, and DNA-binding were inhibited, as was activation of Jak1 and Stat1 by interferon gamma. The kinetics and requirement for new RNA and protein synthesis for inhibition of interleukin 6 by ionomycin and GM-CSF differed, but both agents increased the association of Jak1 with protein tyrosine phosphatase ID (SH2-containing phosphatase 2). Our results demonstrate that crosstalk with distinct signaling pathways can inhibit JAK-STAT signal transduction, and suggest approaches for modulating cytokine activity during immune responses and inflammatory processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We generated transgenic mice expressing chimeric receptors, which comprise extracellular domains of the human granulocyte–macrophage colony-stimulating factor (hGM-CSF) receptor and transmembrane and cytoplasmic domains of the mouse leukemia inhibitory factor receptor. In suspension cultures of lineage-negative (Lin−), 5-fluorouracil-resistant bone marrow cells of the transgenic mice, a combination of hGM-CSF and stem cell factor (SCF) induced exponential expansions of mixed colony-forming unit. The combination of hGM-CSF and SCF was effective on enriched, Lin−Sca-1+c-kit+ progenitors and increased either mixed colony-forming unit or cobblestone area–forming cells. In case of stimulation with hGM-CSF and SCF, interleukin-6 (IL-6) and SCF, or IL-11 and SCF, the most efficient expansion was achieved with hGM-CSF and SCF. When Lin−Sca-1+c-kit+CD34− further enriched progenitors were clone sorted and individually incubated in the presence of SCF, hGM-CSF stimulated a larger number of cells than did IL-6, IL-6 and soluble IL-6 receptor (IL-6R), or IL-11. These data suggest the presence of IL-6Rα-, IL-11Rα-, and gp130-low to -negative primitive hematopoietic progenitors. Such primitive progenitors are equipped with signal transduction molecules and can expand when these chimeric receptors are genetically introduced into the cells and stimulated with hGM-CSF in the presence of SCF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alternative splicing leads to the expression of multiple isoforms of the subunits (IFNAR1 and IFNAR2) of the type I IFN receptor. Here we describe two transcripts representing extracellular forms of ovine IFNAR1 and show that soluble extracellular forms of both IFNAR2 and IFNAR1, prepared in recombinant form in Escherichia coli, have antiviral (AV) activity in the absence of IFN. Exposure of Madin-Darby bovine kidney cells to the extracellular domain (R2E) of IFNAR2 at concentrations as low as 10 nM afforded complete protection against vesicular stomatitis virus and led to the rapid activation of the transcription factors ISGF3 and GAF. Although R2E can bind IFN (Kd ≈70 nM), activity was observed irrespective of whether or not ligand was present. R2E was inactive on mouse L929 cells but active on L929 cells expressing a membraneanchored, ovine/human chimeric IFNAR2 with an ovine extracellular domain. The data suggest that AV activity is conferred by the ability of soluble R2E to associate with the transfected IFNAR2 subunit rather than resident murine IFNAR1. Soluble extracellular forms of IFNAR1 have lower AV activity than R2E on Madin-Darby bovine kidney cells but are less species-specific and protect wild-type L929 cells as efficiently as the transfected cell line, presumably by interacting with one of the murine receptor subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the relationships between the apical sorting mechanism using lipid rafts and the soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) machinery, which is involved in membrane docking and fusion. We first confirmed that anti-alpha-SNAP antibodies inhibit the apical pathway in Madin– Darby canine kidney (MDCK) cells; in addition, we report that a recombinant SNAP protein stimulates the apical transport whereas a SNAP mutant inhibits this transport step. Based on t-SNARE overexpression experiments and the effect of botulinum neurotoxin E, syntaxin 3 and SNAP-23 have been implicated in apical membrane trafficking. Here, we show in permeabilized MDCK cells that antisyntaxin 3 and anti-SNAP-23 antibodies lower surface delivery of an apical reporter protein. Moreover, using a similar approach, we show that tetanus toxin-insensitive, vesicle-associated membrane protein (TI-VAMP; also called VAMP7), a recently described apical v-SNARE, is involved. Furthermore, we show the presence of syntaxin 3 and TI-VAMP in isolated apical carriers. Polarized apical sorting has been postulated to be mediated by the clustering of apical proteins into dynamic sphingolipid-cholesterol rafts. We provide evidence that syntaxin 3 and TI-VAMP are raft-associated. These data support a raft-based mechanism for the sorting of not only apically destined cargo but also of SNAREs having functions in apical membrane-docking and fusion events.