10 resultados para soil critical level

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinopathy of prematurity is a blinding disease, initiated by lack of retinal vascular growth after premature birth. We show that lack of insulin-like growth factor I (IGF-I) in knockout mice prevents normal retinal vascular growth, despite the presence of vascular endothelial growth factor, important to vessel development. In vitro, low levels of IGF-I prevent vascular endothelial growth factor-induced activation of protein kinase B (Akt), a kinase critical for endothelial cell survival. Our results from studies in premature infants suggest that if the IGF-I level is sufficient after birth, normal vessel development occurs and retinopathy of prematurity does not develop. When IGF-I is persistently low, vessels cease to grow, maturing avascular retina becomes hypoxic and vascular endothelial growth factor accumulates in the vitreous. As IGF-I increases to a critical level, retinal neovascularization is triggered. These data indicate that serum IGF-I levels in premature infants can predict which infants will develop retinopathy of prematurity and further suggests that early restoration of IGF-I in premature infants to normal levels could prevent this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Death-associated protein kinase (DAP-kinase) is a Ca+2/calmodulin-regulated serine/threonine kinase with a multidomain structure that participates in apoptosis induced by a variety of signals. To identify regions in this protein that are critical for its proapoptotic activity, we performed a genetic screen on the basis of functional selection of short DAP-kinase-derived fragments that could protect cells from apoptosis by acting in a dominant-negative manner. We expressed a library of randomly fragmented DAP-kinase cDNA in HeLa cells and treated these cells with IFN-γ to induce apoptosis. Functional cDNA fragments were recovered from cells that survived the selection, and those in the sense orientation were examined further in a secondary screen for their ability to protect cells from DAP-kinase-dependent tumor necrosis factor-α-induced apoptosis. We isolated four biologically active peptides that mapped to the ankyrin repeats, the “linker” region, the death domain, and the C-terminal tail of DAP-kinase. Molecular modeling of the complete death domain provided a structural basis for the function of the death-domain-derived fragment by suggesting that the protective fragment constitutes a distinct substructure. The last fragment, spanning the C-terminal serine-rich tail, defined a new regulatory region. Ectopic expression of the tail peptide (17 amino acids) inhibited the function of DAP-kinase, whereas removal of this region from the complete protein caused enhancement of the killing activity, indicating that the C-terminal tail normally plays a negative regulatory role. Altogether, this unbiased screen highlighted functionally important regions in the protein and revealed an additional level of regulation of DAP-kinase apoptotic function that does not affect the catalytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms must sense their environment and rapidly tune their metabolism to ambient conditions to efficiently use available resources. We have identified a gene encoding a response regulator, NblR, that complements a cyanobacterial mutant unable to degrade its light-harvesting complex (phycobilisome), in response to nutrient deprivation. Cells of the nblR mutant (i) have more phycobilisomes than wild-type cells during nutrient-replete growth, (ii) do not degrade phycobilisomes during sulfur, nitrogen, or phosphorus limitation, (iii) cannot properly modulate the phycobilisome level during exposure to high light, and (iv) die rapidly when starved for either sulfur or nitrogen, or when exposed to high light. Apart from regulation of phycobilisome degradation, NblR modulates additional functions critical for cell survival during nutrient-limited and high-light conditions. NblR does not appear to be involved in acclimation responses that occur only during a specific nutrient limitation. In contrast, it controls at least some of the general acclimation responses; those that occur during any of a number of different stress conditions. NblR plays a pivotal role in integrating different environmental signals that link the metabolism of the cell to light harvesting capabilities and the activities of the photosynthetic apparatus; this modulation is critical for cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant genome research is needed as the foundation for an entirely new level of efficiency and success in the application of genetics and breeding to crop plants and products from crop plants. Genetic improvements in crop plants beyond current capabilities are needed to meet the growing world demand not only for more food, but also a greater diversity of food, higher-quality food, and safer food, produced on less land, while conserving soil, water, and genetic resources. Plant biology research, which is poised for dramatic advances, also depends fundamentally on plant genome research. The current Arabidopsis Genome Project has proved of immediate value to plant biology research, but a much greater effort is needed to ensure the full benefits of plant biology and especially plant genome research to agriculture. International cooperation is critical, both because genome projects are too large for any one country and the information forthcoming is of benefit to the world and not just the countries that do the work. Recent research on grass genomes has revealed that, because of extensive senteny and colinearity within linkage groups that make up the chromosomes, new information on the genome of one grass can be used to understand the genomes and predict the location of genes on chromosomes of the other grasses. Genome research applied to grasses as a group thereby can increase the efficiency and effectiveness of breeding for improvement of each member of this group, which includes wheat, corn, and rice, the world’s three most important sources of food.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of the sucrose synthase (SuSy) gene (SuSy) by low O2, low temperature, and limiting carbohydrate supply suggested a role in carbohydrate metabolism under stress conditions. The isolation of a maize (Zea mays L.) line mutant for the two known SuSy genes but functionally normal showed that SuSy activity might not be required for aerobic growth and allowed the possibility of investigating its importance during anaerobic stress. As assessed by root elongation after return to air, hypoxic pretreatment improved anoxic tolerance, in correlation with the number of SuSy genes and the level of SuSy expression. Furthermore, root death in double-mutant seedlings during anoxic incubation could be attributed to the impaired utilization of sucrose (Suc). Collectively, these data provide unequivocal evidence that Suc is the principal C source and that SuSy is the main enzyme active in Suc breakdown in roots of maize seedlings deprived of O2. In this situation, SuSy plays a critical role in anoxic tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NM23-H2, a presumed regulator of tumor metastasis in humans, is a hexameric protein with both enzymatic (NDP kinase) and regulatory (transcriptional activation) activity. While the structure and catalytic mechanisms have been well characterized, the mode of DNA binding is not known. We examined this latter function in a site-directed mutational study and identified residues and domains essential for the recognition of a c-myc regulatory sequence. Three amino acids, Arg-34, Asn-69, and Lys-135, were found among 30 possibilities to be critical for DNA binding. Two of these, Asn-69 and Lys-135, are not conserved between NM23 variants differing in DNA-binding potential, suggesting that DNA recognition resides partly in nonconserved amino acids. All three DNA-binding defective mutant proteins are active enzymatically and appear to be stable hexamers, suggesting that they perform at the level of DNA recognition and that separate functional domains exist for enzyme catalysis and DNA binding. In the context of the known crystal structure of NM23-H2, the DNA-binding residues are located within distinct structural motifs in the monomer, which are exposed to the surface near the 2-fold axis of adjacent subunits in the hexamer. These findings are explained by a model in which NM23-H2 binds DNA with a combinatorial surface consisting of the "outer" face of the dimer. Chemical crosslinking data support a dimeric DNA-binding mode by NM23-H2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunization of mice with rat type II collagen (CII), a cartilage-specific protein, leads to development of collagen-induced arthritis (CIA), a model for rheumatoid arthritis. To define the interaction between the immune system and cartilage, we produced two sets of transgenic mice. In the first we point mutated the mouse CII gene to express an earlier defined T-cell epitope, CII-(256-270), present in rat CII. In the second we mutated the mouse type I collagen gene to express the same T-cell epitope. The mice with mutated type I collagen showed no T-cell reactivity to rat CII and were resistant to CIA. Thus, the CII-(256-270) epitope is immunodominant and critical for development of CIA. In contrast, the mice with mutated CII had an intact B-cell response and had T cells which could produce gamma interferon, but not proliferate, in response to CII. They developed CIA, albeit with a reduced incidence. Thus, we conclude that T cells recognize CII derived from endogenous cartilage and are partially tolerized but may still be capable of mediating CIA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While studies of the regulation of gene expression have generally concerned qualitative changes in the selection or the level of expression of a gene, much of the regulation that occurs within a cell involves the continuous subtle optimization of the levels of proteins used in macromolecular complexes. An example is the biosynthesis of the ribosome, in which equimolar amounts of nearly 80 ribosomal proteins must be supplied by the cytoplasm to the nucleolus. We have found that the transcript of one of the ribosomal protein genes of Saccharomyces cerevisiae, RPL32, participates in such fine tuning. Sequences from exon I of the RPL32 transcript interact with nucleotides from the intron to form a structure that binds L32 to regulate splicing. In the spliced transcript, the same sequences interact with nucleotides from exon II to form a structure that binds L32 to regulate translation, thus providing two levels of autoregulation. We now show, by using a sensitive cocultivation assay, that these RNA structures and their interaction with L32 play a role in the fitness of the cell. The change of a single nucleotide within the 5' leader of the RPL32 transcript, which abolishes the site for L32 binding, leads to detectably slower growth and to eventual loss of the mutant strain from the culture. Experiments designed to assess independently the regulation of splicing and the regulation of translation are presented. These observations demonstrate that, in evolutionary terms, subtle regulatory compensations can be critical. The change in structure of an RNA, due to alteration of just one noncoding nucleotide, can spell the difference between biological success and failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each G protein-coupled receptor recognizes only a distinct subset of the many structurally closely related G proteins expressed within a cell. How this selectively is achieved at a molecular level is not well understood, particularly since no specific point-to-point contact sites between a receptor and its cognate G protein(s) have been identified. In this study, we demonstrate that a 4-aa epitope on the m2 muscarinic acetylcholine receptor, a prototypical Gi/o-coupled receptor, can specifically recognize the C-terminal 5 aa of alpha subunits of the Gi/o protein family. The m2 receptor residues involved in this interaction are predicted to be located on one side of an alpha-helical receptor region present at the junction between the third intracellular loop and the sixth transmembrane domain. Coexpression studies with hybrid m2/m3 muscarinic receptors and mutant G-protein alpha q subunits showed that the receptor/G-protein contact site identified in this study is essential for coupling specificity and G-protein activation.