3 resultados para sinus obliteration
em National Center for Biotechnology Information - NCBI
Resumo:
Objective: To investigate whether users of oral contraceptives who are carriers of a hereditary prothrombotic condition (factor V Leiden mutation, protein C, S, or antithrombin deficiency) have an increased risk of cerebral sinus thrombosis.
Resumo:
We have studied the effects of endogenous and exogenous estrogen on atherosclerotic lesions in apolipoprotein E-deficient mice. Female mice ovariectomized (OVX) at weaning displayed increases (P < 0.01) in fatty streak lesions in the proximal aorta and aortic sinus compared with female mice with intact ovarian function. These differences between the OVX and sham controls were apparent in both chow- and "Western-type" diet-fed mice. Moreover, increases in lesion size following OVX occurred without changes in plasma cholesterol. Hormone replacement with subdermal 17-beta-estradiol pellets releasing either 6, 14, or 28 micrograms/day significantly decreased (P < 0.001) atherosclerotic lesion area in both male and OVX female mice. In contrast, neither 17-alpha-estradiol (28 micrograms/day) or tamoxifen (85 micrograms/day) affected lesion progression in OVX female mice. In the Western diet-fed group, exogenous estradiol markedly reduced plasma cholesterol and triglycerides, whereas, in animals fed the chow diet, exogenous estrogen and tamoxifen treatment only decreased plasma and very low density lipoprotein triglycerides. However, lesion area was only weakly correlated with plasma cholesterol and triglycerides, 0.35 and 0.44 tau values, respectively (P < 0.01). In summary, in the apolipoprotein E-deficient mouse 17-beta-estradiol protects against atherosclerotic lesion formation, and this can only be partially explained through effects on plasma lipoprotein levels.
Resumo:
Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis.