20 resultados para sintesi organica, sintesi asimmetrica, organocatalisi, reazioni tandem, aziridine

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoprostanes (iPs) are free radical catalyzed prostaglandin isomers. Analysis of individual isomers of PGF2α—F2-iPs—in urine has reflected lipid peroxidation in humans. However, up to 64 F2-iPs may be formed, and it is unknown whether coordinate generation, disposition, and excretion of F2-iPs occurs in humans. To address this issue, we developed methods to measure individual members of the four structural classes of F2-iPs, using liquid chromatography/tandem mass spectrometry (LC/MS/MS), in which sample preparation is minimized. Authentic standards of F2-iPs of classes III, IV, V, and VI were used to identify class-specific ions for multiple reaction monitoring. Using iPF2α-VI as a model compound, we demonstrated the reproducibility of the assay in human urine. Urinary levels of all F2-iPs measured were elevated in patients with familial hypercholesterolemia. However, only three of eight F2-iPs were elevated in patients with congestive heart failure, compared with controls. Paired analyses by GC/MS and LC/MS/MS of iPF2α-VI in hypercholesterolemia and of 8,12-iso-iPF2α-VI in congestive heart failure were highly correlated. This approach will permit high throughput analysis of multiple iPs in human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse insulin-like growth factor 2 (Igf2) locus is a complex genomic region that produces multiple transcripts from alternative promoters. Expression at this locus is regulated by parental imprinting. However, despite the existence of putative imprinting control elements in the Igf2 upstream region, imprinted transcriptional repression is abolished by null mutations at the linked H19 locus. To clarify the extent to which the Igf2 upstream region contains autonomous imprinting control elements we have performed functional and comparative analyses of the region in the mouse and human. Here we report the existence of multiple, overlapping imprinted (maternally repressed) sense and antisense transcripts that are associated with a tandem repeat in the mouse Igf2 upstream region. Regions flanking the repeat exhibit tissue-specific parental allelic methylation patterns, suggesting the existence of tissue-specific control elements in the upstream region. Studies in H19 null mice indicate that both parental allelic methylation and monoallelic expression of the upstream transcripts depends on an intact H19 gene acting in cis. The homologous region in human IGF2 is structurally conserved, with the significant exception that it does not contain a tandem repeat. Our results support the proposal that tandem repeats act to target methylation to imprinted genetic loci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test a different approach to understanding the relationship between the sequence of part of a protein and its conformation in the overall folded structure, the amino acid sequence corresponding to an α-helix of T4 lysozyme was duplicated in tandem. The presence of such a sequence repeat provides the protein with “choices” during folding. The mutant protein folds with almost wild-type stability, is active, and crystallizes in two different space groups, one isomorphous with wild type and the other with two molecules in the asymmetric unit. The fold of the mutant is essentially the same in all cases, showing that the inserted segment has a well-defined structure. More than half of the inserted residues are themselves helical and extend the helix present in the wild-type protein. Participation of additional duplicated residues in this helix would have required major disruption of the parent structure. The results clearly show that the residues within the duplicated sequence tend to maintain a helical conformation even though the packing interactions with the remainder of the protein are different from those of the original helix. It supports the hypothesis that the structures of individual α-helices are determined predominantly by the nature of the amino acids within the helix, rather than the structural environment provided by the rest of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A de novo sequencing program for proteins is described that uses tandem MS data from electron capture dissociation and collisionally activated dissociation of electrosprayed protein ions. Computer automation is used to convert the fragment ion mass values derived from these spectra into the most probable protein sequence, without distinguishing Leu/Ile. Minimum human input is necessary for the data reduction and interpretation. No extra chemistry is necessary to distinguish N- and C-terminal fragments in the mass spectra, as this is determined from the electron capture dissociation data. With parts-per-million mass accuracy (now available by using higher field Fourier transform MS instruments), the complete sequences of ubiquitin (8.6 kDa) and melittin (2.8 kDa) were predicted correctly by the program. The data available also provided 91% of the cytochrome c (12.4 kDa) sequence (essentially complete except for the tandem MS-resistant region K13–V20 that contains the cyclic heme). Uncorrected mass values from a 6-T instrument still gave 86% of the sequence for ubiquitin, except for distinguishing Gln/Lys. Extensive sequencing of larger proteins should be possible by applying the algorithm to pieces of ≈10-kDa size, such as products of limited proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of tandemly repeated DNA sequences (TR-1) of 350-bp unit length was isolated from the knob DNA of chromosome 9 of Zea mays L. Comparative fluorescence in situ hybridization revealed that TR-1 elements are also present in cytologically detectable knobs on other maize chromosomes in different proportions relative to the previously described 180-bp repeats. At least one knob on chromosome 4 is composed predominantly of the TR-1 repeat. In addition, several small clusters of the TR-1 and 180-bp repeats have been found in different chromosomes, some not located in obvious knob heterochromatin. Variation in restriction fragment fingerprints and copy number of the TR-1 elements was found among maize lines and among maize chromosomes. TR-1 tandem arrays up to 70 kilobases in length can be interspersed with stretches of 180-bp tandem repeat arrays. DNA sequence analysis and restriction mapping of one particular stretch of tandemly arranged TR-1 units indicate that these elements may be organized in the form of fold-back DNA segments. The TR-1 repeat shares two short segments of homology with the 180-bp repeat. The longest of these segments (31 bp; 64% identity) corresponds to the conserved region among 180-bp repeats. The polymorphism and complex structure of knob DNA suggest that, similar to the fold-back DNA-containing giant transposons in Drosophila, maize knob DNA may have some properties of transposable elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endonuclease III from Escherichia coli, yeast (yNtg1p and yNtg2p) and human and E.coli endonuclease VIII have a wide substrate specificity, and recognize oxidation products of both thymine and cytosine. DNA containing single dihydrouracil (DHU) and tandem DHU lesions were used as substrates for these repair enzymes. It was found that yNtg1p prefers DHU/G and exhibits much weaker enzymatic activity towards DNA containing a DHU/A pair. However, yNtg2p, E.coli and human endonuclease III and E.coli endonuclease VIII activities were much less sensitive to the base opposite the lesion. Although these enzymes efficiently recognize single DHU lesions, they have limited capacity for completely removing this damaged base when DHU is present on duplex DNA as a tandem pair. Both E.coli endonuclease III and yeast yNtg1p are able to remove only one DHU in DNA containing tandem lesions, leaving behind a single DHU at either the 3′- or 5′-terminus of the cleaved fragment. On the other hand, yeast yNtg2p can remove DHU remaining on the 5′-terminus of the 3′ cleaved fragment, but is unable to remove DHU remaining on the 3′-terminus of the cleaved 5′ fragment. In contrast, both human endonuclease III and E.coli endonuclease VIII can remove DHU remaining on the 3′-terminus of a cleaved 5′ fragment, but are unable to remove DHU remaining on the 5′-terminus of a cleaved 3′ fragment. Tandem lesions are known to be generated by ionizing radiation and agents that generate reactive oxygen species. The fact that these repair glycosylases have only a limited ability to remove the DHU remaining at the terminus suggests that participation of other repair enzymes is required for the complete removal of tandem lesions before repair synthesis can be efficiently performed by DNA polymerase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Institute of Standards and Technology (NIST) has compiled and maintained a Short Tandem Repeat DNA Internet Database (http://www.cstl.nist.gov/biotech/strbase/) since 1997 commonly referred to as STRBase. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase consolidates and organizes the abundant literature on this subject to facilitate on-going efforts in DNA typing. Observed alleles and annotated sequence for each STR locus are described along with a review of STR analysis technologies. Additionally, commercially available STR multiplex kits are described, published polymerase chain reaction (PCR) primer sequences are reported, and validation studies conducted by a number of forensic laboratories are listed. To supplement the technical information, addresses for scientists and hyperlinks to organizations working in this area are available, along with the comprehensive reference list of over 1300 publications on STRs used for DNA typing purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-contamination between cell lines is a longstanding and frequent cause of scientific misrepresentation. Estimates from national testing services indicate that up to 36% of cell lines are of a different origin or species to that claimed. To test a standard method of cell line authentication, 253 human cell lines from banks and research institutes worldwide were analyzed by short tandem repeat profiling. The short tandem repeat profile is a simple numerical code that is reproducible between laboratories, is inexpensive, and can provide an international reference standard for every cell line. If DNA profiling of cell lines is accepted and demanded internationally, scientific misrepresentation because of cross-contamination can be largely eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The class I major histocompatibility complex (MHC) glycoprotein HLA-B27 binds short peptides containing arginine at peptide position 2 (P2). The HLA-B27/peptide complex is recognized by T cells both as part of the development of the repertoire of T cells in the cellular immune system and during activation of cytotoxic T cells. Based on the three-dimensional structure of HLA-B27, we have synthesized a ligand with an aziridine-containing side chain designed to mimic arginine and to bind covalently in the arginine-specific P2 pocket of HLA-B27. Using tryptic digestion followed by mass spectrometry and amino acid sequencing, the aziridine-containing ligand is shown to alkylate specifically cysteine 67 of HLA-B27. Neither free cysteine in solution nor an exposed cysteine on a class II MHC molecule can be alkylated, showing that specific recognition between the anchor side-chain pocket of an MHC class I protein and the designed ligand (propinquity) is necessary to induce the selective covalent reaction with the MHC class I molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5' noncoding region of poliovirus RNA contains an internal ribosome entry site (IRES) for cap-independent initiation of translation. Utilization of the IRES requires the participation of one or more cellular proteins that mediate events in the translation initiation reaction, but whose biochemical roles have not been defined. In this report, we identify a cellular RNA binding protein isolated from the ribosomal salt wash of uninfected HeLa cells that specifically binds to stem-loop IV, a domain located in the central part of the poliovirus IRES. The protein was isolated by specific RNA affinity chromatography, and 55% of its sequence was determined by automated liquid chromatography-tandem mass spectrometry. The sequence obtained matched that of poly(rC) binding protein 2 (PCBP2), previously identified as an RNA binding protein from human cells. PCBP2, as well as a related protein, PCBP1, was over-expressed in Escherichia coli after cloning the cDNAs into an expression plasmid to produce a histidine-tagged fusion protein. Specific interaction between recombinant PCBP2 and poliovirus stem-loop IV was demonstrated by RNA mobility shift analysis. The closely related PCBP1 showed no stable interaction with the RNA. Stem-loop IV RNA containing a three nucleotide insertion that abrogates translation activity and virus viability was unable to bind PCBP2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A very old unanswered question in classical cytology is whether chromosomes are arranged randomly in sperm or whether they occupy specific positions. Even with modern methods of chromosome painting, it is difficult to resolve this question for the very condensed and almost spherical sperm head of most mammals. We have taken advantage of the unusual fibrillar sperm head of monotreme mammals (echidna and platypus) to examine the position of chromosome landmarks in a two-dimensional array. We used fluorescence and radioactive in situ hybridization to telomeric, rDNA, and unique sequences to show that chromosomes are arranged tandemly and in a defined order in the sperm nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A functional methyl-directed mismatch repair pathway in Escherichia coli prevents the formation of deletions between 101-bp tandem repeats with 4% sequence divergence. Deletions between perfectly homologous repeats are unaffected. Deletion in both cases occurs independently of the homologous recombination gene, recA. Because the methyl-directed mismatch repair pathway detects and excises one strand of a mispaired duplex, an intermediate for RecA-independent deletion of tandem repeats must therefore be a heteroduplex formed between strands of each repeat. We find that MutH endonuclease, which in vivo incises specifically the newly replicated strand of DNA, and the Dam methylase, the source of this strand-discrimination, are required absolutely for the exclusion of "homeologous" (imperfectly homologous) tandem deletion. This supports the idea that the heteroduplex intermediate for deletion occurs during or shortly after DNA replication in the context of hemi-methylation. Our findings confirm a "replication slippage" model for deletion formation whereby the displacement and misalignment of the nascent strand relative to the repeated sequence in the template strand accomplishes the deletion.