2 resultados para single crystal epilayer
em National Center for Biotechnology Information - NCBI
Resumo:
Lasers emitting in the ultraviolet wavelength range of 260-360 nm are almost exclusively used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of macromolecules. Reports about the use of lasers emitting in the infrared first appeared in 1990/1991. In contrast to MALDI in the ultraviolet, a very limited number of reports on IR-MALDI have since been published. Several matrices have been identified for infrared MALDI yielding spectra of a quality comparable to those obtained in the ultraviolet. Water (ice) was recognized early as a potential matrix because of its strong O-H stretching mode near 3 microm. Interest in water as matrix derives primarily from the fact that it is the major constituent of most biological tissues. If functional as matrix, it might allow the in situ analysis of macromolecular constituents in frozen cell sections without extraction or exchanging the water. We present results that show that IR-MALDI of lyophilized proteins, air dried protein solutions, or protein crystals up to a molecular mass of 30 kDa is possible without the addition of any separate matrix. Samples must be frozen to retain a sufficient fraction of the water of hydration in the vacuum. The limited current sensitivity, requiring at least 10 pmol of protein for a successful analysis needs to be further improved.
Resumo:
The crystal structure of raite was solved and refined from data collected at Beamline Insertion Device 13 at the European Synchrotron Radiation Facility, using a 3 × 3 × 65 μm single crystal. The refined lattice constants of the monoclinic unit cell are a = 15.1(1) Å; b = 17.6(1) Å; c = 5.290(4) Å; β = 100.5(2)°; space group C2/m. The structure, including all reflections, refined to a final R = 0.07. Raite occurs in hyperalkaline rocks from the Kola peninsula, Russia. The structure consists of alternating layers of a hexagonal chicken-wire pattern of 6-membered SiO4 rings. Tetrahedral apices of a chain of Si six-rings, parallel to the c-axis, alternate in pointing up and down. Two six-ring Si layers are connected by edge-sharing octahedral bands of Na+ and Mn3+ also parallel to c. The band consists of the alternation of finite Mn–Mn and Na–Mn–Na chains. As a consequence of the misfit between octahedral and tetrahedral elements, regions of the Si–O layers are arched and form one-dimensional channels bounded by 12 Si tetrahedra and 2 Na octahedra. The channels along the short c-axis in raite are filled by isolated Na(OH,H2O)6 octahedra. The distorted octahedrally coordinated Ti4+ also resides in the channel and provides the weak linkage of these isolated Na octahedra and the mixed octahedral tetrahedral framework. Raite is structurally related to intersilite, palygorskite, sepiolite, and amphibole.