77 resultados para signal peptide
em National Center for Biotechnology Information - NCBI
Resumo:
Although there is considerable evidence that PrPSc is the infectious form of the prion protein, it has recently been proposed that a transmembrane variant called CtmPrP is the direct cause of prion-associated neurodegeneration. We report here, using a mutant form of PrP that is synthesized exclusively with the CtmPrP topology, that CtmPrP is retained in the endoplasmic reticulum and is degraded by the proteasome. We also demonstrate that CtmPrP contains an uncleaved, N-terminal signal peptide as well as a C-terminal glycolipid anchor. These results provide insight into general mechanisms that control the topology of membrane proteins during their synthesis in the endoplasmic reticulum, and they also suggest possible cellular pathways by which CtmPrP may cause disease.
Resumo:
The maize floury 2 (fl2) mutation enhances the lysine content of the grain, but the soft texture of the endosperm makes it unsuitable for commercial production. The mutant phenotype is linked with the appearance of a 24-kDa alpha-zein protein and increased synthesis of binding protein, both of which are associated with irregularly shaped protein bodies. We have cloned the gene encoding the 24-kDa protein and show that it is expressed as a 22-kDa alpha-zein with an uncleaved signal peptide. Comparison of the deduced N-terminal amino acid sequence of the 24-kDa alpha-zein protein with other alpha-zeins revealed an alanine to valine substitution at the C-terminal position of the signal peptide, a histidine insertion within the seventh alpha-helical repeat, and an alanine to threonine substitution with the same alpha-helical repeat of the protein. Structural defects associated with this alpha-zein explain many of the phenotypic effects of the fl2 mutation.
Resumo:
The influenza C virus CM2 protein is a small glycosylated integral membrane protein (115 residues) that spans the membrane once and contains a cleavable signal sequence at its N terminus. The coding region for CM2 (CM2 ORF) is located at the C terminus of the 342-amino acid (aa) ORF of a colinear mRNA transcript derived from influenza C virus RNA segment 6. Splicing of the colinear transcript introduces a translational stop codon into the ORF and the spliced mRNA encodes the viral matrix protein (CM1) (242 aa). The mechanism of CM2 translation was investigated by using in vitro and in vivo translation of RNA transcripts. It was found that the colinear mRNA derived from influenza C virus RNA segment 6 serves as the mRNA for CM2. Furthermore, CM2 translation does not depend on any of the three in-frame methionine residues located at the beginning of CM2 ORF. Rather, CM2 is a proteolytic cleavage product of the p42 protein product encoded by the colinear mRNA: a cleavage event that involves the recognition and cleavage of an internal signal peptide presumably by signal peptidase resident in the endoplasmic reticulum. Alteration of the predicted signal peptidase cleavage site by mutagenesis blocked generation of CM2. The other polypeptide species resulting from the cleavage of p42, designated p31, contains the CM1 coding region and an additional C-terminal 17 aa (formerly the CM2 signal peptide). Protein p31, in comparison to CM1, displays characteristics of an integral membrane protein.
Resumo:
Assembly of several inner membrane proteins—leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep—has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.
Resumo:
Two isoforms of human interleukin 15 (IL-15) exist. One isoform has a shorter putative signal peptide (21 amino acids) and its transcript shows a tissue distribution pattern that is distinct from that of the alternative IL-15 isoform with a 48-aa signal peptide. The 21-aa signal isoform is preferentially expressed in tissues such as testis and thymus. Experiments using different combinations of signal peptides and mature proteins (IL-2, IL-15, and green fluorescent protein) showed that the short signal peptide regulates the fate of the mature protein by controlling the intracellular trafficking to nonendoplasmic reticulum sites, whereas the long signal peptide both regulates the rate of protein translation and functions as a secretory signal peptide. As a consequence, the IL-15 associated with the short signal peptide is not secreted, but rather is stored intracellularly, appearing in the nucleus and cytoplasmic components. Such production of an intracellular lymphokine is not typical of other soluble interleukin systems, suggesting a biological function for IL-15 as an intracellular molecule.
Resumo:
Previous studies have demonstrated that presecretory proteins such as maltose binding protein (MBP) and outer membrane protein A (OmpA) are targeted to the Escherichia coli inner membrane by the molecular chaperone SecB, but that integral membrane proteins are targeted by the signal recognition particle (SRP). In vitro studies have suggested that trigger factor binds to a sequence near the N terminus of the mature region of OmpA and shunts the protein into the SecB pathway by blocking an interaction between SRP and the signal peptide. By contrast, we have found that the targeting pathway of a protein under physiological conditions is dictated by the composition of its targeting signal. Replacement of the MBP or OmpA signal peptide with the first transmembrane segment of AcrB abolished the dependence on SecB for transport and rerouted both proteins into the SRP targeting pathway. More modest alterations of the MBP signal peptide that simply increase its hydrophobicity also promoted SRP binding. Furthermore, we obtained evidence that SRP has a low affinity for typical signal peptides in vivo. These results imply that different classes of E. coli proteins are targeted by distinct pathways because bacterial SRP binds to a more restricted range of targeting signals than its eukaryotic counterpart.
Resumo:
The HIV-1 envelope glycoprotein gp120 displays inefficient intracellular transport, which is caused by its retention in the endoplasmic reticulum. Coexpression in insect cells (Sf9) of HIV-1 gp120 with calnexin has shown that their interaction was modulated by the signal sequence of HIV-1 gp120. gp120, with its natural signal sequence, showed a prolonged association with calnexin with a t1/2 of greater than 20 min. Replacement of the natural signal sequence with the signal sequence from mellitin led to a decreased time of association of gp120 with calnexin (t1/2 < 10 min). These different times of calnexin association coincided both with the folding of gp120 as measured by the ability of bind CD4 and with endoplasmic reticulum to Golgi transport as analyzed by the acquisition of partial endoglycosidase H resistance. Using a monospecific antibody to the HIV-1 gp120 natural signal peptide, we showed that calnexin associated with N-glycosylated but uncleaved gp120. Only after dissociation from calnexin was gp120 cleaved, but very inefficiently. Only the small proportion of signal-cleaved gp120 molecules acquired transport competence and were secreted. This is the first report demonstrating the effect of the signal sequence on calnexin association.
Resumo:
The Escherichia coli cytosolic homotetrameric protein SecB is known to be involved in protein export across the plasma membrane. A currently prevalent view holds that SecB functions exclusively as a chaperone interacting nonspecifically with unfolded proteins, not necessarily exported proteins, whereas a contrary view holds that SecB functions primarily as a specific signal-recognition factor--i.e., in binding to the signal sequence region of exported proteins. To experimentally resolve these differences we assayed for binding between chemically pure SecB and chemically pure precursor (p) form (containing a signal sequence) and mature (m) form (lacking a signal sequence) of a model secretory protein (maltose binding protein, MBP) that was C-terminally truncated. Because of the C-terminal truncation, neither p nor m was able to fold. We found that SecB bound with 100-fold higher affinity to p (Kd 0.8 nM) than it bound to m (Kd 80 nM). As the presence of the signal sequence in p is the only feature that distinguished p from m, these data strongly suggest that the high-affinity binding of SecB is to the signal sequence region and not the mature region of p. Consistent with this conclusion, we found that a wild-type signal peptide, but not an export-incompetent mutant signal peptide of another exported protein (LamB), competed for binding to p. Moreover, the high-affinity binding of SecB to p was resistant to 1 M salt, whereas the low-affinity binding of SecB to m was not. These qualitative differences suggested that SecB binding to m was primarily by electrostatic interactions, whereas SecB binding to p was primarily via hydrophobic interactions, presumably with the hydrophobic core of the signal sequence. Taken together our data strongly support the notion that SecB is primarily a specific signal-recognition factor.
Resumo:
Signal peptides direct the cotranslational targeting of nascent polypeptides to the endoplasmic reticulum (ER). It is currently believed that the signal recognition particle (SRP) mediates this targeting by first binding to signal peptides and then by directing the ribosome/nascent chain/SRP complex to the SRP receptor at the ER. We show that ribosomes can mediate targeting by directly binding to translocation sites. When purified away from cytosolic factors, including SRP and nascent-polypeptide-associated complex (NAC), in vitro assembled translation intermediates representing ribosome/nascent-chain complexes efficiently bound to microsomal membranes, and their nascent polypeptides could subsequently be efficiently translocated. Because removal of cytosolic factors from the ribosome/nascent-chain complexes also resulted in mistargeting of signalless nascent polypeptides, we previously investigated whether readdition of cytosolic factors, such as NAC and SRP, could restore fidelity to targeting. Without SRP, NAC prevented all nascent-chain-containing ribosomes from binding to the ER membrane. Furthermore, SRP prevented NAC from blocking ribosome-membrane association only when the nascent polypeptide contained a signal. Thus, NAC is a global ribosome-binding prevention factor regulated in activity by signal-peptide-directed SRP binding. A model presents ribosomes as the targeting vectors for delivering nascent polypeptides to translocation sites. In conjunction with signal peptides, SRP and NAC contribute to this specificity of ribosomal function by regulating exposure of a ribosomal membrane attachment site that binds to receptors in the ER membrane.
Resumo:
Although it generally is accepted that the interaction of Mycobacterium tuberculosis with alveolar macrophages is a key step in the pathogenesis of tuberculosis, interactions with other cell types, especially epithelial cells, also may be important. In this study we describe the molecular characterization of a mycobacterial heparin-binding hemagglutinin (HBHA), a protein that functions as an adhesin for epithelial cells. The structural gene was cloned from M. tuberculosis and bacillus Calmette–Guérin, and the sequence was found to be identical between the two species. The calculated Mr was smaller than the observed Mr when analyzed by SDS/PAGE. This difference can be attributed to the Lys/Pro-rich repeats that occur at the C-terminal end of the protein and to a putative carbohydrate moiety. Glycosylation of HBHA appears to protect the protein from proteolytic degradation, which results in the removal of the C-terminal Lys/Pro-rich region responsible for binding of HBHA to sulfated carbohydrates. Evidence suggests that glycosylation is also important for HBHA-mediated hemagglutination and for certain immunologic properties of the protein. Finally, the absence of a signal peptide in the coding region of HBHA raises the possibility that this protein is not secreted via the general secretion pathway.
Resumo:
The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.
Resumo:
Although “polymorphic castes” in social insects are well known as one of the most important phenomena of polyphenism, few studies of caste-specific gene expressions have been performed in social insects. To identify genes specifically expressed in the soldier caste of the Japanese damp-wood termite Hodotermopsis japonica, we employed the differential-display method using oligo(dT) and arbitrary primers, compared mRNA from the heads of mature soldiers and pseudergates (worker caste), and identified a clone (PCR product) 329 bp in length termed SOL1. Northern blot analysis showed that the SOL1 mRNA is about 1.0 kb in length and is expressed specifically in mature soldiers, but not in pseudergates, even in the presoldier induction by juvenile hormone analogue, suggesting that the product is specific for terminally differentiated soldiers. By using the method of 5′- and 3′-rapid amplification of cDNA ends, we isolated the full length of SOL1 cDNA, which contained an ORF with a putative signal peptide at the N terminus. The sequence showed no significant homology with any other known protein sequences. In situ hybridization analysis showed that SOL1 is expressed specifically in the mandibular glands. These results strongly suggest that the SOL1 gene encodes a secretory protein specifically synthesized in the mandibular glands of the soldiers. Histological observations revealed that the gland actually develops during the differentiation into the soldier caste.
Resumo:
In view of the well-established role of neurohypophysial hormones in osmoregulation of terrestrial vertebrates, lungfishes are a key group for study of the molecular and functional evolution of the hypothalamo-neurohypophysial system. Here we report on the primary structure of the precursors encoding vasotocin (VT) and [Phe2]mesotocin ([Phe2]MT) of the Australian lungfish, Neoceratodus forsteri. Genomic sequence analysis and Northern blot analysis confirmed that [Phe2]MT is a native oxytocin family peptide in the Australian lungfish, although it has been reported that the lungfish neurohypophysis contains MT. The VT precursor consists of a signal peptide, VT, that is connected to a neurophysin by a Gly-Lys-Arg sequence, and a copeptin moiety that includes a Leu-rich core segment and a glycosylation site. In contrast, the [Phe2]MT precursor does not contain a copeptin moiety. These structural features of the lungfish precursors are consistent with those in tetrapods, but different from those in teleosts where both VT and isotocin precursors contain a copeptin-like moiety without a glycosylation site at the carboxyl terminals of their neurophysins. Comparison of the exon/intron organization also supports homology of the lungfish [Phe2]MT gene with tetrapod oxytocin/MT genes, rather than with teleost isotocin genes. Moreover, molecular phylogenetic analysis shows that neurohypophysial hormone genes of the lungfish are closely related to those of the toad. The present results along with previous morphological findings indicate that the hypothalamo-neurohypophysial system of the lungfish has evolved along the tetrapod lineage, whereas the teleosts form a separate lineage, both within the class Osteichthyes.
Resumo:
To isolate genes involved in morphogenic aspects of testis development, and which may act in cell signaling pathways downstream of the testis-determining gene Sry, we have developed a modified mRNA differential display method named signal peptide differential display. It was used to target those genes that encode proteins having a signal peptide sequence. By using this method, we isolated a gene named testatin. This gene was found to be related to a group of genes that encodes cysteine protease inhibitors known as cystatins. Cystatins and their target proteases have been associated with tumor formation and metastasis, but also are involved in natural tissue remodeling events such as bone resorption and embryo implantation. We show that testatin expression is restricted to fetal gonads and adult testis. Furthermore, testatin is expressed during testis cord formation in pre-Sertoli cells, believed to be the site of Sry action, at a time immediately after the peak of Sry expression. This finding suggests that testatin might be activated by transcription factors that are known to orchestrate the early testis development pathway. This gene therefore represents one of the putative downstream targets likely to have an essential role in tissue reorganization during early testis development.
Resumo:
The tsetse thrombin inhibitor, a potent and specific low molecular mass (3,530 Da) anticoagulant peptide, was purified previously from salivary gland extracts of Glossina morsitans morsitans (Diptera: Glossinidae). A 303-bp coding sequence corresponding to the inhibitor has now been isolated from a tsetse salivary gland cDNA library by using degenerate oligonucleotide probes. The full-length cDNA contains a 26-bp untranslated segment at its 5′ end, followed by a 63-bp sequence corresponding to a putative secretory signal peptide. A 96-bp segment codes for the mature tsetse thrombin inhibitor, whose predicted molecular weight matches that of the purified native protein. Based on its lack of homology to any previously described family of molecules, the tsetse thrombin inhibitor appears to represent a unique class of naturally occurring protease inhibitors. Recombinant tsetse thrombin inhibitor expressed in Escherichia coli and the chemically synthesized peptide are both substantially less active than the purified native protein, suggesting that posttranslational modification(s) may be necessary for optimal inhibitory activity. The tsetse thrombin inhibitor gene, which is present as a single copy in the tsetse genome, is expressed at high levels in salivary glands and midguts of adult tsetse flies, suggesting a possible role for the anticoagulant in both feeding and processing of the bloodmeal.