20 resultados para sigma clav

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sigma 54 is a required factor for bacterial RNA polymerase to respond to enhancers and directs a mechanism that is a hybrid between bacterial and eukaryotic transcription. Three pathways were found that bypass the enhancer requirement in vitro. These rely on either deletion of the sigma 54 N terminus or destruction of the DNA consensus −12 promoter recognition element or altering solution conditions to favor transient DNA melting. Each of these allows unstable heparin-sensitive pre-initiation complexes to form that can be driven to transcribe in the absence of both enhancer protein and ATP β–γ hydrolysis. These disparate pathways are proposed to have a common basis in that multiple N-terminal contacts may mediate the interactions between the polymerase and the DNA region where melting originates. The results raise possibilities for common features of open complex formation by different RNA polymerases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence-selective transcription by bacterial RNA polymerase (RNAP) requires σ factor that participates in both promoter recognition and DNA melting. RNAP lacking σ (core enzyme) will initiate RNA synthesis from duplex ends, nicks, gaps, and single-stranded regions. We have used DNA templates containing short regions of heteroduplex (bubbles) to compare initiation in the presence and absence of various σ factors. Using bubble templates containing the σD-dependent flagellin promoter, with or without its associated upstream promoter (UP) element, we demonstrate that UP element stimulation occurs efficiently even in the absence of σ. This supports a model in which the UP element acts primarily through the α subunit of core enzyme to increase the initial association of RNAP with the promoter. Core and holoenzyme do differ substantially in the template positions chosen for initiation: σD restricts initiation to sites 8–9 nucleotides downstream of the conserved −10 element. Remarkably, σA also has a dramatic effect on start-site selection even though the σA holoenzyme is inactive on the corresponding homoduplexes. The start sites chosen by the σA holoenzyme are located 8 nucleotides downstream of sequences on the nontemplate strand that resemble the conserved −10 hexamer recognized by σA. Thus, σA appears to recognize the −10 region even in a single-stranded state. We propose that in addition to its described roles in promoter recognition and start-site melting, σ also localizes the transcription start site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clostridium difficile, a causative agent of antibiotic-associated diarrhea and its potentially lethal form, pseudomembranous colitis, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The level of toxin production appears to be critical for determining the severity of the disease, but the mechanism by which toxin synthesis is regulated is unknown. The product of a gene, txeR, that lies just upstream of the tox gene cluster was shown to be needed for tox gene expression in vivo and to activate promoter-specific transcription of the tox genes in vitro in conjunction with RNA polymerases from C. difficile, Bacillus subtilis, or Escherichia coli. TxeR was shown to function as an alternative sigma factor for RNA polymerase. Because homologs of TxeR regulate synthesis of toxins and a bacteriocin in other Clostridium species, TxeR appears to be a prototype for a novel mode of regulation of toxin genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta (i.e., in alpha 2 beta, alpha 2 beta beta', and alpha 2 beta beta' sigma), and amino acids 175-210 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta' (i.e., in alpha 2 beta beta' and alpha 2 beta beta' sigma). The protected regions are conserved in the alpha homologs of prokaryotic, eukaryotic, archaeal, and chloroplast RNAPs and contain sites of substitutions that affect RNAP assembly. We conclude that the protected regions define determinants of alpha for direct functional interaction with beta and beta'. The observed maximal magnitude of protection upon interaction with beta and the observed maximal magnitude of protection upon interaction with beta' both correspond to the expected value for complete protection of one of the two alpha protomers of RNAP (i.e., 50% protection). We propose that only one of the two alpha protomers of RNAP interacts with beta and that only one of the two alpha protomers of RNAP interacts with beta'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promoters recognized by sigma 70, the primary sigma of Escherichia coli, consist of two highly conserved hexamers located at -10 and -35 bp from the start point of transcription, separated by a preferred spacing of 17 bp. sigma factors have two distinct DNA binding domains that recognize the two hexamer sequences. However, the component of RNA polymerase recognizing the length of the spacing between hexamers has not been determined. Using an equilibrium DNA binding competition assay, we demonstrate that a polypeptide of sigma 70 carrying both DNA binding domains is very sensitive to promoter spacing, whereas a sigma 70 polypeptide with only one DNA binding domain is not. Furthermore, a mutant sigma, selected for increasing transcription of the minimal lac promoter (18-bp spacer), has an altered response to promoter spacing in vivo and in vitro. Our data support the idea that sigma makes simultaneous, productive contacts at both the -10 and the -35 regions of the promoter and discerns the spacing between these conserved regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the sigma class glutathione transferase from squid digestive gland in complex with S-(3-iodobenzyl)glutathione reveals a third binding site for the glutathione conjugate besides the two in the active sites of the dimer. The additional binding site is near the crystallographic two-fold axis between the two alpha 4-turn-alpha 5 motifs. The principal binding interactions with the conjugate include specific electrostatic interactions between the peptide and the two subunits and a hydrophobic cavity found across the two-fold axis that accommodates the 3-iodobenzyl group. Thus, two identical, symmetry-related but mutually exclusive binding modes for the third conjugate are observed. The hydrophobic pocket is about 14 A from the hydroxyl group of Tyr-7 in the active site. This site is a potential transport binding site for hydrophobic molecules or their glutathione conjugates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-specific activation of the transcription factor sigma F during sporulation in Bacillus subtilis is controlled by a regulatory pathway involving the proteins SpoIIE, SpoIIAA, and SpoIIAB. SpoIIAB is an antagonist of sigma F, and SpoIIAA, which is capable of overcoming SpoIIAB-mediated inhibition of sigma F, is an antagonist of SpoIIAB. SpoIIAA is, in turn, negatively regulated by SpoIIAB, which phosphorylates SpoIIAA on serine 58. SpoIIAA is also positively regulated by SpoIIE, which dephosphorylates SpoIIAA-P, the phosphorylated form of SpoIIAA. Here, isoelectric focusing and Western blot analysis were used to examine the phosphorylation state of SpoIIAA in vivo. SpoIIAA was found to be largely in the phosphorylated state during sporulation in wild-type cells but a significant portion of the protein that was unphosphorylated could also be detected. Consistent with the idea that SpoIIE governs dephosphorylation of SpoIIAA-P, SpoIIAA was entirely in the phosphorylated state in spoIIE mutant cells. Conversely, overexpression of spoIIE led to an increase in the ratio of unphosphorylated SpoIIAA to SpoIIAA-P and caused inappropriate activation of sigma F in the predivisional sporangium. We also show that a mutant form of SpoIIAA (SpoIIAA-S58T) in which serine 58 was replaced with threonine was present exclusively as SpoIIAA-P, a finding that confirms previous biochemical evidence that the mutant protein is an effective substrate for the SpoIIAB kinase but that SpoIIAA-S58T-P cannot be dephosphorylated by SpoIIE. We conclude that SpoIIE plays a crucial role in controlling the phosphorylation state of SpoIIAA during sporulation and thus in governing the cell-specific activation of sigma F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned the gene for a putative chloroplast RNA polymerase sigma factor from the unicellular rhodophyte Cyanidium caldarium. This gene contains an open reading frame encoding a protein of 609 amino acids with domains highly homologous to all four conserved regions found in bacterial and cyanobacterial sigma 70-type subunits. When Southern blots of genomic DNA were hybridized to the "rpoD box" oligonucleotide probe, up to six hybridizing hands were observed. Transcripts of the sigma factor gene were undetectable in RNA from dark-grown cells but were abundant in the poly(A)+ fraction of RNA from illuminated cells. The sigma factor gene was expressed in Escherichia coli, and antibodies against the expressed sigma factor fusion protein cross-reacted with a 55-kDa protein in partially purified chloroplast RNA polymerase. Antibodies directed against a cyanobacterial RNA polymerase sigma factor also cross-reacted with a 55-kDa protein in the same enzyme preparation. Immunoprecipitation experiments showed that this enzyme preparation contains proteins with the same molecular weights as the alpha, beta, beta', and beta" subunits of chloroplast RNA polymerase in higher plants. This study identifies a gene for a plastid RNA polymerase sigma factor and indicates that there may be a family of nuclear-encoded sigma factors that recognize promoters in subsets of plastid genes and regulate differential gene expression at the transcriptional level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative RNA polymerase sigma factors are a common means of coordinating gene regulation in bacteria. Using PCR amplification with degenerate primers, we identified and cloned a sigma factor gene, sigF, from Mycobacterium tuberculosis. The deduced protein encoded by sigF shows significant similarity to SigF sporulation sigma factors from Streptomyces coelicolor and Bacillus subtilis and to SigB, a stress-response sigma factor, from B. subtilis. Southern blot surveys with a sigF-specific probe identified cross-hybridizing bands in other slow-growing mycobacteria, Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mycobacterium avium, but not in the rapid-growers Mycobacterium smegmatis or Mycobacterium abscessus. RNase protection assays revealed that M. tuberculosis sigF mRNA is not present during exponential-phase growth in M. bovis BCG cultures but is strongly induced during stationary phase, nitrogen depletion, and cold shock. Weak expression of M. tuberculosis sigF was also detected during late-exponential phase, oxidative stress, anaerobiasis, and alcohol shock. The specific expression of M. tuberculosis sigF during stress or stationary phase suggests that it may play a role in the ability of tubercle bacilli to adapt to host defenses and persist during human infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a nonspecific protein cleaving reagent to map the interactions between subunits of the multisubunit enzyme RNA polymerase (Escherichia coli). We developed suitable conditions for using an untethered Fe-EDTA reagent, which does not bind significantly to proteins. Comparison of the cleaved fragments of the subunits from the core enzyme (alpha 2 beta beta') and the holoenzyme (core+sigma 70) shows that absence of the sigma 70 subunit is associated with the appearance of several cleavage sites on the subunits beta (within 10 residues of sequence positions 745, 764, 795, and 812) and beta' (within 10 residues of sequence positions 581, 613, and 728). A cleavage site near beta residue 604 is present in the holoenzyme but absent in the core, demonstrating that a conformational change occurs when sigma 70 binds. No differences are observed for the alpha subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas fluorescens Pf-5, a rhizosphere-inhabiting bacterium that suppresses several soilborne pathogens of plants, produces the antibiotics pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol. A gene necessary for pyrrolnitrin production by Pf-5 was identified as rpoS, which encodes the stationary-phase sigma factor sigma s. Several pleiotropic effects of an rpoS mutation in Escherichia coli also were observed in an RpoS- mutant of Pf-5. These included sensitivities of stationary-phase cells to stresses imposed by hydrogen peroxide or high salt concentration. A plasmid containing the cloned wild-type rpoS gene restored pyrrolnitrin production and stress tolerance to the RpoS- mutant of Pf-5. The RpoS- mutant overproduced pyoluteorin and 2,4-diacetyl-phloroglucinol, two antibiotics that inhibit growth of the phytopathogenic fungus Pythium ultimum, and was superior to the wild type in suppression of seedling damping-off of cucumber caused by Pythium ultimum. When inoculated onto cucumber seed at high cell densities, the RpoS- mutant did not survive as well as the wild-type strain on surfaces of developing seedlings. Other stationary-phase-specific phenotypes of Pf-5, such as the production of cyanide and extracellular protease(s) were expressed by the RpoS- mutant, suggesting that sigma s is only one of the sigma factors required for the transcription of genes in stationary-phase cells of P. fluorescens. These results indicate that a sigma factor encoded by rpoS influences antibiotic production, biological control activity, and survival of P. fluorescens on plant surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmembrane protein-tyrosine-phosphatases (PTPases) LAR, PTP delta, and PTP sigma each contain two intracellular PTPase domains and an extracellular region consisting of Ig-like and fibronectin type III-like domains. We describe the cloning and characterization of human PTP sigma (HPTP sigma) and compare the structure, alternative splicing, tissue distribution, and PTPase activity of LAR, HPTP delta, and HPTP sigma, as well their ability to associate with the intracellular coiled-coil LAR-interacting protein LIP.1. Overall, these three PTPases are structurally very similar, sharing 64% amino acid identity. Multiple isoforms of LAR, HPTP delta, and HPTP sigma appear to be generated by tissue-specific alternative splicing of up to four mini-exon segments that encode peptides of 4-16 aa located in both the extracellular and intracellular regions. Alternative usage of these peptides varies depending on the tissue mRNA analyzed. Short isoforms of both HPTP sigma and HPTP delta were also detected that contain only four of the eight fibronectin type III-like domains. Northern blot analysis indicates that LAR and HPTP sigma are broadly distributed whereas HPTP delta expression is largely restricted to brain, as is the short HPTP sigma isoform containing only four fibronectin type III-like domains. LAR, HPTP delta, and HPTP sigma exhibit similar in vitro PTPase activities and all three interact with LIP.1, which has been postulated to recruit LAR to focal adhesions. Thus, these closely related PTPases may perform similar functions in various tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium meliloti C4-dicarboxylic acid transport protein D (DCTD) activates transcription by a form of RNA polymerase holoenzyme that has sigma 54 as its sigma factor (referred to as E sigma 54). DCTD catalyzes the ATP-dependent isomerization of closed complexes between E sigma 54 and the dctA promoter to transcriptionally productive open complexes. Transcriptional activation probably involves specific protein-protein interactions between DCTD and E sigma 54. Interactions between sigma 54-dependent activators and E sigma 54 are transient, and there has been no report of a biochemical assay for contact between E sigma 54 and any activator to date. Heterobifunctional crosslinking reagents were used to examine protein-protein interactions between the various subunits of E sigma 54 and DCTD. DCTD was crosslinked to Salmonella typhimurium sigma 54 with the crosslinking reagents succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate and N-hydroxysulfosuccinimidyl-4-azidobenzoate. Cys-307 of sigma 54 was identified by site-directed mutagenesis as the residue that was crosslinked to DCTD. DCTD was also crosslinked to the beta subunit of Escherichia coli core RNA polymerase with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, but not with N-hydroxysulfosuccinimidyl-4-azidobenzoate. These data suggest that interactions of DCTD with sigma 54 and the beta subunit may be important for transcriptional activation and offer evidence for interactions between a sigma 54-dependent activator and sigma 54, as well as the beta subunit of RNA polymerase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic infection by alginate-producing (mucoid) Pseudomonas aeruginosa is the leading cause of mortality among cystic fibrosis (CF) patients. During the course of sustained infection, the production of an alginate capsule protects the bacteria and allows them to persist in the CF lung. One of the key regulators of alginate synthesis is the algT (algU) gene encoding a putative alternative sigma factor (sigma E). AlgT was hyperproduced and purified from Escherichia coli. The N-terminal sequence of the purified protein matched perfectly with that predicted from the DNA sequence. The purified protein, in the presence of E. coli RNA polymerase core enzyme, was able to initiate transcription of an algT promoter. Deletion of the -35 region of this promoter abolished this activity in vitro as well as in vivo. These data indicate that the algT gene encodes a sigma factor that is autoregulatory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis continues to be responsible for the deaths of millions of people, yet the virulence factors of the causative pathogens remain unknown. Genetic complementation experiments with strains of the Mycobacterium tuberculosis complex have identified a gene from a virulent strain that restores virulence to an attenuated strain. The gene, designated rpoV, has a high degree of homology with principal transcription or sigma factors from other bacteria, particularly Mycobacterium smegmatis and Streptomyces griseus. The homologous rpoV gene of the attenuated strain has a point mutation causing an arginine-->histidine change in a domain known to interact with promoters. To our knowledge, association of loss of bacterial virulence with a mutation in the principal sigma factor has not been previously reported. The results indicate either that tuberculosis organisms have an alternative principal sigma factor that promotes virulence genes or, more probably, that this particular mutant principal sigma factor is unable to promote expression of one or more genes required for virulence. Study of genes and proteins differentially regulated by the mutant transcription factor should facilitate identification of further virulence factors.