2 resultados para shortage of prey

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aposematic signals that warn predators of the noxious qualities of prey gain their greatest selective advantage when predators have already experienced similar signals. Existing theory explains how such signals can spread through selective advantage after they are present at some critical frequency, but is unclear about how warning signals can be selectively advantageous when the trait is initially rare (i.e., when it first arises through mutation) and predators are naive. When aposematism is controlled by a maternal effect gene, the difficulty of initial rarity may be overcome. Unlike a zygotically expressed gene, a maternally expressed aposematism gene will be hidden from selection because it is not phenotypically expressed in the first individual with the mutation. Furthermore, the first individual carrying the new mutation will produce an entire family of aposematic offspring, thereby providing an immediate fitness advantage to this gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Predators of herbivorous animals can affect plant populations by altering herbivore density, behavior, or both. To test whether the indirect effect of predators on plants arises from density or behavioral responses in a herbivore population, we experimentally examined the dynamics of terrestrial food chains comprised of old field plants, leaf-chewing grasshoppers, and spider predators in Northeast Connecticut. To separate the effects of predators on herbivore density from the effects on herbivore behavior, we created two classes of spiders: (i) risk spiders that had their feeding mouth parts glued to render them incapable of killing prey and (ii) predator spiders that remained unmanipulated. We found that the effect of predators on plants resulted from predator-induced changes in herbivore behavior (shifts in activity time and diet selection) rather than from predator-induced changes in grasshopper density. Neither predator nor risk spiders had a significant effect on grasshopper density relative to a control. This demonstrates that the behavioral response of prey to predators can have a strong impact on the dynamics of terrestrial food chains. The results make a compelling case to examine behavioral as well as density effects in theoretical and empirical research on food chain dynamics.