13 resultados para shape from shading

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast marching level set method is presented for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential equation for a propagating level set function and use techniques borrowed from hyperbolic conservation laws. Topological changes, corner and cusp development, and accurate determination of geometric properties such as curvature and normal direction are naturally obtained in this setting. This paper describes a particular case of such methods for interfaces whose speed depends only on local position. The technique works by coupling work on entropy conditions for interface motion, the theory of viscosity solutions for Hamilton-Jacobi equations, and fast adaptive narrow band level set methods. The technique is applicable to a variety of problems, including shape-from-shading problems, lithographic development calculations in microchip manufacturing, and arrival time problems in control theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compound 1 (F), a nonpolar nucleoside analog that is isosteric with thymidine, has been proposed as a probe for the importance of hydrogen bonds in biological systems. Consistent with its lack of strong H-bond donors or acceptors, F is shown here by thermal denaturation studies to pair very poorly and with no significant selectivity among natural bases in DNA oligonucleotides. We report the synthesis of the 5′-triphosphate derivative of 1 and the study of its ability to be inserted into replicating DNA strands by the Klenow fragment (KF, exo− mutant) of Escherichia coli DNA polymerase I. We find that this nucleotide derivative (dFTP) is a surprisingly good substrate for KF; steady-state measurements indicate it is inserted into a template opposite adenine with efficiency (Vmax/Km) only 40-fold lower than dTTP. Moreover, it is inserted opposite A (relative to C, G, or T) with selectivity nearly as high as that observed for dTTP. Elongation of the strand past F in an F–A pair is associated with a brief pause, whereas that beyond A in the inverted A–F pair is not. Combined with data from studies with F in the template strand, the results show that KF can efficiently replicate a base pair (A–F/F–A) that is inherently very unstable, and the replication occurs with very high fidelity despite a lack of inherent base-pairing selectivity. The results suggest that hydrogen bonds may be less important in the fidelity of replication than commonly believed and that nucleotide/template shape complementarity may play a more important role than previously believed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/BM 40/osteonectin is a matricellular protein shown to function as a counteradhesive factor that induces cell rounding and as an inhibitor of cell proliferation. These activities have been defined in cell culture, in which interpretation has been complicated by the presence of endogenous SPARC. We therefore sought to determine whether cell shape and proliferation would be affected by the absence of SPARC. Mesangial cells, fibroblasts, and aortic smooth muscle cells were isolated from SPARC-null and age-matched, wild-type mice. In contrast to wild-type cells, SPARC-null mesangial cells exhibited a flat morphology and an altered actin cytoskeleton. In addition, vinculin-containing focal adhesions were distributed over the center of SPARC-null cells, whereas in wild-type cells, the number of focal adhesions was reduced, and these structures were restricted largely to the cell periphery. Although the SPARC-null fibroblasts did not display overt differences in cell morphology, the cells responded to exogenous recombinant SPARC by rounding up in a manner similar to that of wild-type fibroblasts. Thus, the expression of endogenous SPARC is not required for the response of cells to SPARC. Additionally, SPARC-null mesangial cells, fibroblasts, and smooth muscle cells proliferated faster than their respective wild-type counterparts. Null cells also showed a greater sensitivity to the inhibition of cell cycle progression by the addition of recombinant SPARC. The increased proliferation rate of SPARC-null cells appeared to be mediated, at least in part, by an increase in the cell cycle regulatory protein cyclin A. We conclude that the expression of SPARC influences the cellular architecture of mesangial cells and that SPARC plays a role in the regulation of cell cycle in mesangial cells, fibroblasts, and smooth muscle cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutant alleles at the dilute unconventional myosin heavy chain locus cause diluted coat color, opisthotonic seizures, and death. The dilute coat color phenotype is caused by irregular clumping of pigment in the hair, but amounts of melanin are unchanged from wild-type controls. The melanocyte phenotype has been described as adendritic, since hair bulb and Harderian gland melanocytes appear to be rounded in tissue sections. These observations do not exclude the possibility that the processes lack pigment, since the melanocyte shape was judged by the distribution of melanin. We have tested this hypothesis by culturing primary melanocytes from dilute mutant and wild-type mice. The mutant melanocytes do not lack processes; instead, they exhibit a concentrated perinuclear distribution of melanosomes, while wild-type melanocytes have a very uniform cytoplasmic distribution of melanosomes. Electron micrographs show no detectable differences in melanosome morphology or maturation between dilute and wild-type melanocytes. Immunofluorescence experiments indicate that the dilute protein is concentrated in regions of the cytoplasm that contain melanosomes. These experiments show that the dilute myosin is necessary for the localization of melanosomes, either by active transport or tethering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “shape” of a female mating preference is the relationship between a male trait and the probability of acceptance as a mating partner. The shape of preferences is important in many models of sexual selection, mate recognition, communication, and speciation, yet it has rarely been measured precisely. Here I examine preference shape for male calling song in a bushcricket (katydid). Preferences change dramatically between races of a species, from strongly directional to broadly stabilizing (but with a net directional effect). Preference shape generally matches the distribution of the male trait. This is compatible with a coevolutionary model of signal-preference evolution, although it does not rule out an alternative model, sensory exploitation. Preference shapes are shown to be genetic in origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random walks have been used to describe a wide variety of systems ranging from cell colonies to polymers. Sixty-five years ago, Kuhn [Kuhn, W. (1934) Kolloid-Z. 68, 2–11] made the prediction, backed later by computer simulations, that the overall shape of a random-walk polymer is aspherical, yet no experimental work has directly tested Kuhn's general idea and subsequent computer simulations. By using fluorescence microscopy, we monitored the conformation of individual, long, random-walk polymers (fluorescently labeled DNA molecules) at equilibrium. We found that a polymer most frequently adopts highly extended, nonfractal structures with a strongly anisotropic shape. The ensemble-average ratio of the lengths of the long and short axes of the best-fit ellipse of the polymer was much larger than unity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two objects with homologous landmarks are said to be of the same shape if the configurations of landmarks of one object can be exactly matched with that of the other by translation, rotation/reflection, and scaling. The observations on an object are coordinates of its landmarks with reference to a set of orthogonal coordinate axes in an appropriate dimensional space. The origin, choice of units, and orientation of the coordinate axes with respect to an object may be different from object to object. In such a case, how do we quantify the shape of an object, find the mean and variation of shape in a population of objects, compare the mean shapes in two or more different populations, and discriminate between objects belonging to two or more different shape distributions. We develop some methods that are invariant to translation, rotation, and scaling of the observations on each object and thereby provide generalizations of multivariate methods for shape analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a shape-recovery technique in two dimensions and three dimensions with specific applications in modeling anatomical shapes from medical images. This algorithm models extremely corrugated structures like the brain, is topologically adaptable, and runs in O(N log N) time, where N is the total number of points in the domain. Our technique is based on a level set shape-recovery scheme recently introduced by the authors and the fast marching method for computing solutions to static Hamilton-Jacobi equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of approximately 80 micros at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 micros. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm x ms(-1) (rapid, from endplate omega figure appearance) or 0.275 nm x ms(-1) (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 micros.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activation of T cells by antigens or mitogens leads to the secretion of cytokines and enzymes that shape the inflammatory response. Among these molecular mediators of inflammation is a heparanase enzyme that degrades the heparan sulfate scaffold of the extracellular matrix (ECM). Activated T cells use heparanase to penetrate the ECM and gain access to the tissues. We now report that among the breakdown products of the ECM generated by heparanase is a trisulfated disaccharide that can inhibit delayed-type hypersensitivity (DTH) in mice. This inhibition of T-cell mediated inflammation in vivo was associated with an inhibitory effect of the disaccharide on the production of biologically active tumor necrosis factor alpha (TNF-alpha) by activated T cells in vitro; the trisulfated disaccharide did not affect T-cell viability or responsiveness generally. Both the in vivo and in vitro effects of the disaccharide manifested a bell-shaped dose-response curve. The inhibitory effects of the trisulfated disaccharide were lost if the sulfate groups were removed. Thus, the disaccharide, which may be a natural product of inflammation, can regulate the functional nature of the response by the T cell to activation. Such a feedback control mechanism could enable the T cell to assess the extent of tissue degradation and adjust its behavior accordingly.