47 resultados para sensory bias

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We model experience-dependent plasticity in the cortical representation of whiskers (the barrel cortex) in normal adult rats, and in adult rats that were prenatally exposed to alcohol. Prenatal exposure to alcohol (PAE) caused marked deficits in experience-dependent plasticity in a cortical barrel-column. Cortical plasticity was induced by trimming all whiskers on one side of the face except two. This manipulation produces high activity from the intact whiskers that contrasts with low activity from the cut whiskers while avoiding any nerve damage. By a computational model, we show that the evolution of neuronal responses in a single barrel-column after this sensory bias is consistent with the synaptic modifications that follow the rules of the Bienenstock, Cooper, and Munro (BCM) theory. The BCM theory postulates that a neuron possesses a moving synaptic modification threshold, θM, that dictates whether the neuron's activity at any given instant will lead to strengthening or weakening of its input synapses. The current value of θM changes proportionally to the square of the neuron's activity averaged over some recent past. In the model of alcohol impaired cortex, the effective θM has been set to a level unattainable by the depressed levels of cortical activity leading to “impaired” synaptic plasticity that is consistent with experimental findings. Based on experimental and computational results, we discuss how elevated θM may be related to (i) reduced levels of neurotransmitters modulating plasticity, (ii) abnormally low expression of N-methyl-d-aspartate receptors (NMDARs), and (iii) the membrane translocation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in adult rat cortex subjected to prenatal alcohol exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swordtail fish (Poeciliidae: genus Xiphophorus) are a paradigmatic case of sexual selection by sensory exploitation. Female preference for males with a conspicuous “sword” ornament is ancestral, suggesting that male morphology has evolved in response to a preexisting bias. The perceptual mechanisms underlying female mate choice have not been identified, complicating efforts to understand the selection pressures acting on ornament design. We consider two alternative models of receiver behavior, each consistent with previous results. Females could respond either to specific characteristics of the sword or to more general cues, such as the apparent size of potential mates. We showed female swordtails a series of computer-altered video sequences depicting a courting male. Footage of an intact male was preferred strongly to otherwise identical sequences in which portions of the sword had been deleted selectively, but a disembodied courting sword was less attractive than an intact male. There was no difference between responses to an isolated sword and to a swordless male of comparable length, or between an isolated sword and a homogenous background. Female preference for a sworded male was abolished by enlarging the image of a swordless male to compensate for the reduction in length caused by removing the ornament. This pattern of results is consistent with mate choice being mediated by a general preference for large males rather than by specific characters. Similar processes may account for the evolution of exaggerated traits in other systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism’s behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a “retrograde” manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure. Complementary NMR and time-resolved fluorescence resonance energy transfer experiments on immobilized four-arm DNA junctions reported here indicate that the Holliday junction cannot be viewed as a static structure but rather as an equilibrium mixture of two conformational isomers. Furthermore, the distribution between the two possible crossover isomers was found to depend on the sequence in a manner that was not anticipated on the basis of previous low-resolution experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of cortical plasticity during adulthood has been demonstrated using many experimental paradigms. Whether this phenomenon is generated exclusively by changes in intrinsic cortical circuitry, or whether it involves concomitant cortical and subcortical reorganization, remains controversial. Here, we addressed this issue by simultaneously recording the extracellular activity of up to 135 neurons in the primary somatosensory cortex, ventral posterior medial nucleus of the thalamus, and trigeminal brainstem complex of adult rats, before and after a reversible sensory deactivation was produced by subcutaneous injections of lidocaine. Following the onset of the deactivation, immediate and simultaneous sensory reorganization was observed at all levels of the somatosensory system. No statistical difference was observed when the overall spatial extent of the cortical (9.1 ± 1.2 whiskers, mean ± SE) and the thalamic (6.1 ± 1.6 whiskers) reorganization was compared. Likewise, no significant difference was found in the percentage of cortical (71.1 ± 5.2%) and thalamic (66.4 ± 10.7%) neurons exhibiting unmasked sensory responses. Although unmasked cortical responses occurred at significantly higher latencies (19.6 ± 0.3 ms, mean ± SE) than thalamic responses (13.1 ± 0.6 ms), variations in neuronal latency induced by the sensory deafferentation occurred as often in the thalamus as in the cortex. These data clearly demonstrate that peripheral sensory deafferentation triggers a system-wide reorganization, and strongly suggest that the spatiotemporal attributes of cortical plasticity are paralleled by subcortical reorganization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The psbA gene of the chloroplast genome has a codon usage that is unusual for plant chloroplast genes. In the present study the evolutionary status of this codon usage is tested by reconstructing putative ancestral psbA sequences to determine the pattern of change in codon bias during angiosperm divergence. It is shown that the codon biases of the ancestral genes are much stronger than all extant flowering plant psbA genes. This is related to previous work that demonstrated a significant increase in synonymous substitution in psbA relative to other chloroplast genes. It is suggested, based on the two lines of evidence, that the codon bias of this gene currently is not being maintained by selection. Rather, the atypical codon bias simply may be a remnant of an ancestral codon bias that now is being degraded by the mutation bias of the chloroplast genome, in other words, that the psbA gene is not at equilibrium. A model for the evolution of selective pressure on the codon usage of plant chloroplast genes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporally encoded information obtained by vibrissal touch could be decoded “passively,” involving only input-driven elements, or “actively,” utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies (≈10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic “relay” neurons function as phase “comparators” that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper decomposes the conventional measure of selection bias in observational studies into three components. The first two components are due to differences in the distributions of characteristics between participant and nonparticipant (comparison) group members: the first arises from differences in the supports, and the second from differences in densities over the region of common support. The third component arises from selection bias precisely defined. Using data from a recent social experiment, we find that the component due to selection bias, precisely defined, is smaller than the first two components. However, selection bias still represents a substantial fraction of the experimental impact estimate. The empirical performance of matching methods of program evaluation is also examined. We find that matching based on the propensity score eliminates some but not all of the measured selection bias, with the remaining bias still a substantial fraction of the estimated impact. We find that the support of the distribution of propensity scores for the comparison group is typically only a small portion of the support for the participant group. For values outside the common support, it is impossible to reliably estimate the effect of program participation using matching methods. If the impact of participation depends on the propensity score, as we find in our data, the failure of the common support condition severely limits matching compared with random assignment as an evaluation estimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory rhodopsin II (SRII) is a repellent phototaxis receptor in the archaeon Halobacterium salinarum, similar to visual pigments in its seven-helix structure and linkage of retinal to the protein by a protonated Schiff base in helix G. Asp-73 in helix C is shown by spectroscopic analysis to be a counterion to the protonated Schiff base in the unphotolyzed SRII and to be the proton acceptor from the Schiff base during photoconversion to the receptor signaling state. Coexpression of the genes encoding mutated SRII with Asn substituted for Asp-73 (D73N) and the SRII transducer HtrII in H. salinarum cells results in a 3-fold higher swimming reversal frequency accompanied by demethylation of HtrII in the dark, showing that D73N SRII produces repellent signals in its unphotostimulated state. Analogous constitutive signaling has been shown to be produced by the similar neutral residue substitution of the Schiff base counterion and proton acceptor Glu-113 in human rod rhodopsin. The interpretation for both seven-helix receptors is that light activation of the wild-type protein is caused primarily by photoisomerization-induced transfer of the Schiff base proton on helix G to its primary carboxylate counterion on helix C. Therefore receptor activation by helix C–G salt-bridge disruption in the photoactive site is a general mechanism in retinylidene proteins spanning the vast evolutionary distance between archaea and humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xath3 encodes a Xenopus neuronal-specific basic helix–loop–helix transcription factor related to the Drosophila proneural factor atonal. We show here that Xath3 acts downstream of X-ngnr-1 during neuronal differentiation in the neural plate and retina and that its expression and activity are modulated by Notch signaling. X-ngnr-1 activates Xath3 and NeuroD by different mechanisms, and the latter two genes crossactivate each other. In the ectoderm, X-ngnr-1 and Xath3 have similar activities, inducing ectopic sensory neurons. Among the sensory-specific markers tested, only those that label cranial neurons were found to be ectopically activated. By contrast, in the retina, X-ngnr-1 and Xath3 overexpression promote the development of overlapping but distinct subtypes of retinal neurons. Together, these data suggest that X-ngnr-1 and Xath3 regulate successive stages of early neuronal differentiation and that, in addition to their general proneural properties, they may contribute, in a context-dependent manner, to some aspect of neuronal identity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT3) support the survival of subpopulations of primary sensory neurons with defined and distinct physiological characteristics. Only a few genes have been identified as being differentially expressed in these subpopulations, and not much is known about the nature of the molecules involved in the processing of sensory information in NGF-dependent nociceptive neurons or NT3-dependent proprioceptive neurons. We devised a simple dorsal root ganglion (DRG) explant culture system, allowing the selection of neuronal populations preferentially responsive to NGF or NT3. The reliability of this assay was first monitored by the differential expression of the NGF and NT3 receptors trkA and trkC, as well as that of neuropeptides and calcium-binding proteins. We then identified four differentially expressed sodium channels, two enriched in the NGF population and two others in the NT3 population. Finally, using an optimized RNA fingerprinting protocol, we identified 20 additional genes, all differentially expressed in DRG explants cultured with NGF or NT3. This approach thus allows the identification of large number of genes expressed in subpopulations of primary sensory neurons and opens the possibility of studying the molecular mechanisms of nociception and proprioception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple brain maps are commonly found in virtually every vertebrate sensory system. Although their functional significance is generally relatively little understood, they seem to specialize in processing distinct sensory parameters. Nevertheless, to yield the stimulus features that ultimately elicit the adaptive behavior, it appears that information streams have to be combined across maps. Results from current lesion experiments in the electrosensory system, however, suggest an alternative possibility. Inactivations of different maps of the first-order electrosensory nucleus in electric fish, the electrosensory lateral line lobe, resulted in markedly different behavioral deficits. The centromedial map is both necessary and sufficient for a particular electrolocation behavior, the jamming avoidance response, whereas it does not affect the communicative response to external electric signals. Conversely, the lateral map does not affect the jamming avoidance response but is necessary and sufficient to evoke communication behavior. Because the premotor pathways controlling the two behaviors in these fish appear to be separated as well, this system illustrates that sensory–motor control of different behaviors can occur in strictly segregated channels from the sensory input of the brain all through to its motor output. This might reflect an early evolutionary stage where multiplication of brain maps can satisfy the demand on processing a wider range of sensory signals ensuing from an enlarged behavioral repertoire, and bridging across maps is not yet required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern functional neuroimaging methods, such as positron-emission tomography (PET), optical imaging of intrinsic signals, and functional MRI (fMRI) utilize activity-dependent hemodynamic changes to obtain indirect maps of the evoked electrical activity in the brain. Whereas PET and flow-sensitive MRI map cerebral blood flow (CBF) changes, optical imaging and blood oxygenation level-dependent MRI map areas with changes in the concentration of deoxygenated hemoglobin (HbR). However, the relationship between CBF and HbR during functional activation has never been tested experimentally. Therefore, we investigated this relationship by using imaging spectroscopy and laser-Doppler flowmetry techniques, simultaneously, in the visual cortex of anesthetized cats during sensory stimulation. We found that the earliest microcirculatory change was indeed an increase in HbR, whereas the CBF increase lagged by more than a second after the increase in HbR. The increased HbR was accompanied by a simultaneous increase in total hemoglobin concentration (Hbt), presumably reflecting an early blood volume increase. We found that the CBF changes lagged after Hbt changes by 1 to 2 sec throughout the response. These results support the notion of active neurovascular regulation of blood volume in the capillary bed and the existence of a delayed, passive process of capillary filling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representations in primary somatosensory cortex (area 3b), become responsive to inputs from the face and any remaining afferents from the arm. Cortical and subcortical mechanisms that underlie this reorganization are uncertain and appear to be manifold. Here we show that the face afferents from the trigeminal nucleus of the brainstem sprout and grow into the cuneate nucleus in adult monkeys after lesions of the dorsal columns of the spinal cord or therapeutic amputation of an arm. This growth may underlie the large-scale expansion of the face representation into the hand region of somatosensory cortex that follows such deafferentations.