2 resultados para sensitivity map
em National Center for Biotechnology Information - NCBI
Resumo:
Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype.
Resumo:
Resistance to bacterial speck in tomato is governed by a gene-for-gene interaction in which a single resistance locus (Pto) in the plant responds to the expression of a specific avirulence gene (avrPto) in the pathogen. Disease susceptibility results if either Pto or avrPto are lacking from the corresponding organisms. Leaves of tomato cultivars that contain the Pto locus also exhibit a hypersensitive-like response upon exposure to an organophosphorous insecticide, fenthion. Recently, the Pto gene was isolated by a map-based cloning approach and was shown to be a member of a clustered multigene family with similarity to various protein-serine/threonine kinases. Another member of this family, termed Fen, was found to confer sensitivity to fenthion. The Pto protein shares 80% identity (87% similarity) with Fen. Here, Pto and Fen are shown to be functional protein kinases that probably participate in the same signal transduction pathway.