7 resultados para second pre-image attack

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The AG dinucleotide at the 3′ splice sites of metazoan nuclear pre-mRNAs plays a critical role in catalytic step II of the splicing reaction. Previous studies have shown that replacement of the guanine by adenine in the AG (AG → GG) inhibits this step. We find that the second step was even more severely inhibited by cytosine (AG → CG) or uracil (AG → UG) substitutions at this position. By contrast, a relatively moderate inhibition was observed with a hypoxanthine substitution (AG → HG). When adenine was replaced by a purine base (AG → PG) or by 7-deazaadenine (AG → c7AG), little effect on the second step was observed, suggesting that the 6-NH2 and N7 groups do not play a critical role in adenine recognition. Finally, replacement of adenine by 2-aminopurine (AG → 2-APG) had no effect on the second step. Taken together, our results suggest that the N1 group of adenine functions as an essential determinant in adenine recognition during the second step of pre-mRNA splicing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temperature-sensitive alleles in four genes (slu7-1, prp16-2, prp17-1, and prp18-1) are known to confer a specific block to the second chemical step of pre-mRNA splicing in vivo in the yeast Saccharomyces cerevisiae. Previous studies showed that Prp16p and Prp18p are required solely for the second step in vitro. The RNA-dependent ATPase, Prp16p, functions at a stage in splicing when ATP is required, whereas Prp18p functions at an ATP-independent stage. Here we use immunodepletion to show that the roles of Slu7p and Prp17p are also confined to the second step of splicing. We find that extracts depleted of Prp17p require both Prp17p and ATP for slicing complementation, whereas extracts depleted of Slu7p require only the addition of Slu7p. These different ATP requirements suggest that Prp16p and Prp17p function before Prp18p and Slu7p. Although SLU7 encodes an essential gene product, we find that a null allele of prp17 is temperature-sensitive for growth and has a partial splicing defect in vitro. Finally, high-copy suppression experiments indicate functional interactions between PRP16 and PRP17, PRP16 and SLU7, and SLU7 and PRP18. Taken together, the results suggest that these four factors may function within a multi-component complex that has both an ATP-dependent and an ATP-independent role in the second step of pre-mRNA splicing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoinositide signal transduction pathways in nuclei use enzymes that are indistinguishable from their cytosolic analogues. We demonstrate that distinct phosphatidylinositol phosphate kinases (PIPKs), the type I and type II isoforms, are concentrated in nuclei of mammalian cells. The cytosolic and nuclear PIPKs display comparable activities toward the substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate. Indirect immunofluorescence revealed that these kinases were associated with distinct subnuclear domains, identified as “nuclear speckles,” which also contained pre-mRNA processing factors. A pool of nuclear phosphatidylinositol bisphosphate (PIP2), the product of these kinases, was also detected at these same sites by monoclonal antibody staining. The localization of PIPKs and PIP2 to speckles is dynamic in that both PIPKs and PIP2 reorganize along with other speckle components upon inhibition of mRNA transcription. Because PIPKs have roles in the production of most phosphatidylinositol second messengers, these findings demonstrate that phosphatidylinositol signaling pathways are localized at nuclear speckles. Surprisingly, the PIPKs and PIP2 are not associated with invaginations of the nuclear envelope or any nuclear membrane structure. The putative absence of membranes at these sites suggests novel mechanisms for the generation of phosphoinositides within these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 (PBSF/SDF-1) is a member of the CXC group of chemokines that is initially identified as a bone marrow stromal cell-derived factor and as a pre-B-cell stimulatory factor. Although most chemokines are thought to be inducible inflammatory mediators, PBSF/SDF-1 is essential for perinatal viability, B lymphopoiesis, bone marrow myelopoiesis, and cardiac ventricular septal formation, and it has chemotactic activities on resting lymphocytes and monocytes. In this paper, we have isolated a cDNA that encodes a seven transmembrane-spanning-domain receptor, designated pre-B-cell-derived chemokine receptor (PB-CKR) from a murine pre-B-cell clone, DW34. The deduced amino acid sequence has 90% identity with that of a HUMSTSR/fusin, a human immunodeficiency virus 1 (HIV-1) entry coreceptor. However, the second extracellular region has lower identity (67%) compared with HUMSTSR/fusin. PB-CKR is expressed during embryo genesis and in many organs and T cells of adult mice. Murine PBSF/SDF-1 induced an increase in intracellular free Ca2+ in DW34 cells and PB-CKR-transfected Chinese hamster ovary (CHO) cells, suggesting that PB-CKR is a functional receptor for murine PBSF/SDF-1. Murine PBSF/SDF-1 also induced Ca2+ influx in fusin-transfected CHO cells. On the other hand, considering previous results that HIV-1 does not enter murine T cells that expressed human CD4, PB-CKR may not support HIV-1 infection. Thus, PB-CKR will be an important tool for functional mapping of HIV-1 entry coreceptor fusin and for understanding the function of PBSF/SDF-1 further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report documents the error rate in a commercially distributed subset of the IMAGE Consortium mouse cDNA clone collection. After isolation of plasmid DNA from 1189 bacterial stock cultures, only 62.2% were uncontaminated and contained cDNA inserts that had significant sequence identity to published data for the ordered clones. An agarose gel electrophoresis pre-screening strategy identified 361 stock cultures that appeared to contain two or more plasmid species. Isolation of individual colonies from these stocks demonstrated that 7.1% of the original 1189 stocks contained both a correct and an incorrect plasmid. 5.9% of the original 1189 stocks contained multiple, distinct, incorrect plasmids, indicating the likelihood of multiple contaminating events. While only 739 of the stocks purchased contained the desired cDNA clone, agarose gel pre-screening, colony isolation and similarity searching of dbEST allowed for the identification of an additional 420 clones that would have otherwise been discarded. Considering the high error rate in this subset of the IMAGE cDNA clone set, the use of sequence verified clones for cDNA microarray construction is warranted. When this is not possible, pre-screening non-sequence verified clones with agarose gel electrophoresis provides an inexpensive and efficient method to eliminate contaminated clones from the probe set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of the actin-activated ATPase of smooth muscle myosin II is known to involve an interaction between the two heads that is controlled by phosphorylation of the regulatory light chain. However, the three-dimensional structure of this inactivated form has been unknown. We have used a lipid monolayer to obtain two-dimensional crystalline arrays of the unphosphorylated inactive form of smooth muscle heavy meromyosin suitable for structural studies by electron cryomicroscopy of unstained, frozen-hydrated specimens. The three-dimensional structure reveals an asymmetric interaction between the two myosin heads. The ATPase activity of one head is sterically “blocked” because part of its actin-binding interface is positioned onto the converter domain of the second head. ATPase activity of the second head, which can bind actin, appears to be inhibited through stabilization of converter domain movements needed to release phosphate and achieve strong actin binding. When the subfragment 2 domain of heavy meromyosin is oriented as it would be in an actomyosin filament lattice, the position of the heads is very different from that needed to bind actin, suggesting an additional contribution to ATPase inhibition in situ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkage disequilibrium between polymorphisms in a natural population may result from various evolutionary forces, including random genetic drift due to sampling of gametes during reproduction, restricted migration between subpopulations in a subdivided population, or epistatic selection. In this report, we present evidence that the majority of significant linkage disequilibria observed in introns of the alcohol dehydrogenase locus (Adh) of Drosophila pseudoobscura are due to epistatic selection maintaining secondary structure of precursor mRNA (pre-mRNA). Based on phylogenetic-comparative analysis and a likelihood approach, we propose secondary structure models of Adh pre-mRNA for the regions of the adult intron and intron 2 where clustering of linkage disequilibria has been observed. Furthermore, we applied the likelihood ratio test to the phylogenetically predicted secondary structure in intron 1. In contrast to the other two structures, polymorphisms associated with the more conserved stem-loop structure of intron 1 are in low frequency, and linkage disequilibria have not been observed. These findings are qualitatively consistent with a model of compensatory fitness interactions. This model assumes that mutations disrupting pairing in a secondary structural element are individually deleterious if they destabilize a functionally important structure; a second "compensatory" mutation, however, may restabilize the structure and restore fitness.