4 resultados para scanning and transmission electron microscopy
em National Center for Biotechnology Information - NCBI
Resumo:
Type II DNA topoisomerases, which create a transient gate in duplex DNA and transfer a second duplex DNA through this gate, are essential for topological transformations of DNA in prokaryotic and eukaryotic cells and are of interest not only from a mechanistic perspective but also because they are targets of agents for anticancer and antimicrobial chemotherapy. Here we describe the structure of the molecule of human topoisomerase II [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.3] as seen by scanning transmission electron microscopy. A globular approximately 90-angstrom diameter core is connected by linkers to two approximately 50-angstrom domains, which were shown by comparison with genetically truncated Saccharomyces cerevisiae topoisomerase II to contain the N-terminal region of the approximately 170-kDa subunits and that are seen in different orientations. When the ATP-binding site is occupied by a nonhydrolyzable ATP analog, a quite different structure is seen that results from a major conformational change and consists of two domains approximately 90 angstrom and approximately 60 angstrom in diameter connected by a linker, and in which the N-terminal domains have interacted. About two-thirds of the molecules show an approximately 25 A tunnel in the apical part of the large domain, and the remainder contain an internal cavity approximately 30 A wide in the large domain close to the linker region. We propose that structural rearrangements lead to this displacement of an internal tunnel. The tunnel is likely to represent the channel through which one DNA duplex, after capture in the clamp formed by the N-terminal domains, is transferred across the interface between the enzyme's subunits. These images are consistent with biochemical observations and provide a structural basis for understanding the reaction of topoisomerase II.
Resumo:
When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.
Resumo:
Surmises of how myosin subfragment 1 (S1) interacts with actin filaments in muscle contraction rest upon knowing the relative arrangement of the two proteins. Although there exist crystallographic structures for both S1 and actin, as well as electron microscopy data for the acto–S1 complex (AS1), modeling of this arrangement has so far only been done “by eye.” Here we report fitted AS1 structures obtained using a quantitative method that is both more objective and makes more complete use of the data. Using undistorted crystallographic results, the best-fit AS1 structure shows significant differences from that obtained by visual fitting. The best fit is produced using the F-actin model of Holmes et al. [Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature (London) 347, 44–49]. S1 residues at the AS1 interface are now found at a higher radius as well as being translated axially and rotated azimuthally. Fits using S1 plus loops missing from the crystal structure were achieved using a homology search method to predict loop structures. These improved fits favor an arrangement in which the loop at the 50- to 20-kDa domain junction of S1 is located near the N terminus of actin. Rigid-body movements of the lower 50-kDa domain, which further improve the fit, produce closure of the large 50-kDa domain cleft and bring conserved residues in the lower 50-kDa domain into an apparently appropriate orientation for close interaction with actin. This finding supports the idea that binding of ATP to AS1 at the end of the ATPase cycle disrupts the actin binding site by changing the conformation of the 50-kDa cleft of S1.
Resumo:
Elongated fibrinogen molecules are comprised of two outer “D” domains, each connected through a “coiled-coil” region to the central “E” domain. Fibrin forms following thrombin cleavage in the E domain and then undergoes intermolecular end-to-middle D:E domain associations that result in double-stranded fibrils. Factor XIIIa mediates crosslinking of the C-terminal regions of γ chains in each D domain (the γXL site) by incorporating intermolecular ɛ-(γ-glutamyl)lysine bonds between amine donor γ406 lysine of one γ chain and a glutamine acceptor at γ398 or γ399 of another. Several lines of evidence show that crosslinked γ chains extend “transversely” between the strands of each fibril, but other data suggest instead that crosslinked γ chains can only traverse end-to-end-aligned D domains within each strand. To examine this issue and determine the location of the γXL site in fibrinogen and assembled fibrin fibrils, we incorporated an amine donor, thioacetyl cadaverine, into glutamine acceptor sites in fibrinogen in the presence of XIIIa, and then labeled the thiol with a relatively small (0.8 nm diameter) electron dense gold cluster compound, undecagold monoaminopropyl maleimide (Au11). Fibrinogen was examined by scanning transmission electron microscopy to locate Au11-cadaverine-labeled γ398/399 D domain sites. Seventy-nine percent of D domain Au11 clusters were situated in middle to proximal positions relative to the end of the molecule, with the remaining Au11 clusters in a distal position. In fibrin fibrils, D domain Au11 clusters were located in middle to proximal positions. These findings show that most C-terminal γ chains in fibrinogen or fibrin are oriented toward the central domain and indicate that γXL sites in fibrils are situated predominantly between strands, suitably aligned for transverse crosslinking.