4 resultados para saturation magnetization
em National Center for Biotechnology Information - NCBI
Resumo:
Objective: To determine the effects of temazepam on the quality of sleep and on oxygen saturation during sleep in subjects at high altitude.
Resumo:
Objective: To assess the response of healthy infants to airway hypoxia (15% oxygen in nitrogen).
Resumo:
31P NMR magnetization transfer measurements have been used to measure the steady state flux between Pi and ATP in yeast cells genetically modified to overexpress an adenine nucleotide translocase isoform. An increase in Pi -> ATP flux and apparent ratio of moles of ATP synthesized/atoms of oxygen consumed (P:O ratio), when these cells were incubated with glucose, demonstrated that the reactions catalyzed by the translocase and F1F0 ATP synthase were readily reversible in vivo. However, when the same cells were incubated with ethanol alone, translocase overexpression had no effect on the measured Pi -> ATP flux or apparent P:O ratio, suggesting that the synthase was now operating irreversibly. This change was accompanied by an increase in the intracellular ADP concentration. These observations are consistent with a model proposed for the kinetic control of mitochondrial ATP synthesis, which was based on isotope exchange measurements with isolated mammalian mitochondria [LaNoue, K. F., Jeffries, F. M. H. & Radda, G. K. (1986) Biochemistry 25, 7667-7675].
Resumo:
The ability of the Hex generalized mismatch repair system to prevent recombination between partially divergent (also called homeologous) sequences during transformation in Streptococcus pneumoniae was investigated. By using as donor in transformation cloned fragments 1.7-17.5% divergent in DNA sequence from the recipient, it was observed that the Hex system prevents chromosomal integration of the least and the most divergent fragments but frequently fails to do so for other fragments. In the latter case, the Hex system becomes saturated (inhibited) due to an excess of mismatches: it is unable to repair a single mismatch located elsewhere on the chromosome. Further investigation with chromosomal donor DNA, carrying only one genetically marked divergent region, revealed that a single divergent fragment can lead to saturation of the Hex system. Increase in cellular concentration of either HexA, the MutS homologue that binds mismatches, or HexB, the MutL homologue for which the essential role in repair as yet remains obscure, was shown to restore repair ability in previously saturating conditions. Investigation of heterospecific transformation by chromosomal DNA from two related streptococcal species, Streptococcus oralis and Streptococcus mitis, also revealed complete saturation of the Hex system. Therefore the Hex system is not a barrier to interspecies recombination in S. pneumoniae. These results are discussed in light of those described for the Mut system of Escherichia coli.