11 resultados para sampling spatial location

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to investigate by using positron emission tomography (PET) whether the cortical pathways that are involved in visual perception of spatial location and object identity are also differentially implicated in retrieval of these types of information from episodic long-term memory. Subjects studied a set of displays consisting of three unique representational line drawings arranged in different spatial configurations. Later, while undergoing PET scanning, subjects' memory for spatial location and identity of the objects in the displays was tested and compared to a perceptual baseline task involving the same displays. In comparison to the baseline task, each of the memory tasks activated both the dorsal and the ventral pathways in the right hemisphere but not to an equal extent. There was also activation of the right prefrontal cortex. When PET scans of the memory tasks were compared to each other, areas of activation were very circumscribed and restricted to the right hemisphere: For retrieval of object identity, the area was in the inferior temporal cortex in the region of the fusiform gyrus (area 37), whereas for retrieval of spatial location, it was in the inferior parietal lobule in the region of the supramarginal gyrus (area 40). Thus, our study shows that distinct neural pathways are activated during retrieval of information about spatial location and object identity from long-term memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Head trauma leading to concussion and electroconvulsive shock (ECS) in humans causes amnesia for events that occurred shortly before the injury (retrograde amnesia). The present experiment investigated the amnesic effect of lidocaine and ECS in 25 rats trained on a working memory version of the Morris water task. Each day, the escape platform was moved to a new location; learning was evidenced by a decrease in the latency to find the platform from the first to the second trial. "Consolidation" of this newly encoded spatial engram was disrupted by bilateral inactivation of the dorsal hippocampus with 1 microliter of 4% lidocaine applied as soon as possible after the first trial. When trial 2 was given after recovery from the lidocaine (30 min after the injection), a normal decrease in latency indicated that the new engram was not disrupted. When trial 2 was given under the influence of lidocaine (5 min after injection), absence of latency decrease demonstrated both the success of the inactivation and the importance of hippocampus for the task. To examine the role of events immediately after learning, ECS (30 or 100 mA, 50 Hz, 1.2 sec) was applied 0 sec to 45 sec after a single escape to the new platform location. A 2-h delay between ECS and trial 2 allowed the effects of ECS to dissipate. ECS applied 45 sec or 30 sec after trial 1 caused no retrograde amnesia: escape latencies on trial 2 were the same as in control rats. However, ECS applied 0 sec or 15 sec after trial 1 induced clear retrograde amnesia: escape latencies on trial 2 were no shorter than on trial 1. It is concluded that the consolidation of a newly formed memory for spatial location can only be disrupted by ECS within 30 sec after learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we study the effect of point mutations in proteins on the redistributions of the conformational substates. We show that regardless of the location of a mutation in the protein structure and of its type, the observed movements of the backbone recur largely at the same positions in the structures. Despite the different interactions that are disrupted and formed by the residue substitution, not only are the conformations very similar, but the regions that move are also the same, regardless of their sequential or spatial distance from the mutation. This observation leads us to conclude that, apart from some extreme cases, the details of the interactions are not critically important in determining the protein conformation or in specifying which parts of the protein would be more prone to take on different local conformations in response to changes in the sequence. This finding further illustrates why proteins manifest a robustness toward many mutational events. This nonuniform distribution of the conformer population is consistently observed in a variety of protein structural types. Topology is critically important in determining folding pathways, kinetics, building block cutting, and anatomy trees. Here we show that topology is also very important in determining which regions of the protein structure will respond to sequence changes, regardless of the sequential or spatial location of the mutation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cortical representational plasticity has been well documented after peripheral and central injuries or improvements in perceptual and motor abilities. This has led to inferences that the changes in cortical representations parallel and account for the improvement in performance during the period of skill acquisition. There have also been several examples of rapidly induced changes in cortical neuronal response properties, for example, by intracortical microstimulation or by classical conditioning paradigms. This report describes similar rapidly induced changes in a cortically mediated perception in human subjects, the ventriloquism aftereffect, which presumably reflects a corresponding change in the cortical representation of acoustic space. The ventriloquism aftereffect describes an enduring shift in the perception of the spatial location of acoustic stimuli after a period of exposure of spatially disparate and simultaneously presented acoustic and visual stimuli. Exposure of a mismatch of 8° for 20–30 min is sufficient to shift the perception of acoustic space by approximately the same amount across subjects and acoustic frequencies. Given that the cerebral cortex is necessary for the perception of acoustic space, it is likely that the ventriloquism aftereffect reflects a change in the cortical representation of acoustic space. Comparisons between the responses of single cortical neurons in the behaving macaque monkey and the stimulus parameters that give rise to the ventriloquism aftereffect suggest that the changes in the cortical representation of acoustic space may begin as early as the primary auditory cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The functional specialization and hierarchical organization of multiple areas in rhesus monkey auditory cortex were examined with various types of complex sounds. Neurons in the lateral belt areas of the superior temporal gyrus were tuned to the best center frequency and bandwidth of band-passed noise bursts. They were also selective for the rate and direction of linear frequency modulated sweeps. Many neurons showed a preference for a limited number of species-specific vocalizations (“monkey calls”). These response selectivities can be explained by nonlinear spectral and temporal integration mechanisms. In a separate series of experiments, monkey calls were presented at different spatial locations, and the tuning of lateral belt neurons to monkey calls and spatial location was determined. Of the three belt areas the anterolateral area shows the highest degree of specificity for monkey calls, whereas neurons in the caudolateral area display the greatest spatial selectivity. We conclude that the cortical auditory system of primates is divided into at least two processing streams, a spatial stream that originates in the caudal part of the superior temporal gyrus and projects to the parietal cortex, and a pattern or object stream originating in the more anterior portions of the lateral belt. A similar division of labor can be seen in human auditory cortex by using functional neuroimaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hippocampal slices are used to show that, as a temporal input pattern of activity flows through a neuronal layer, a temporal-to-spatial transformation takes place. That is, neurons can respond selectively to the first or second of a pair of input pulses, thus transforming different temporal patterns of activity into the activity of different neurons. This is demonstrated using associative long-term potentiation of polysynaptic CA1 responses as an activity-dependent marker: by depolarizing a postsynaptic CA1 neuron exclusively with the first or second of a pair of pulses from the dentate gyrus, it is possible to “tag” different subpopulations of CA3 neurons. This technique allows sampling of a population of neurons without recording simultaneously from multiple neurons. Furthermore, it reflects a biologically plausible mechanism by which single neurons may develop selective responses to time-varying stimuli and permits the induction of context-sensitive synaptic plasticity. These experimental results support the view that networks of neurons are intrinsically able to process temporal information and that it is not necessary to invoke the existence of internal clocks or delay lines for temporal processing on the time scale of tens to hundreds of milliseconds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To successfully navigate through the environment animals rely on information concerning their directional heading and location. Many cells within the postsubiculum and anterior thalamus discharge as a function of the animal’s head direction (HD), while many cells in the hippocampus discharge in relation to the animal’s location. We placed lesions in the hippocampus and recorded from HD cells in the postsubiculum and anterior thalamus. Lesions of the hippocampus did not disrupt the HD cell signal in either brain area, indicating that the HD cell signal must be generated by structures external to the hippocampus. In addition, each cell’s preferred firing direction remained stable across days when the lesioned animal was placed into a novel environment. This stability appeared to weaken after several weeks of nonexposure to the new enclosure for two out of five animals, and subsequently recorded cells from these two animals established a new angular relationship between the familiar and novel environments. Our results suggest that extra-hippocampal structures are capable of creating and maintaining a novel representation of the animal’s environmental context. This representation shares features in common with mnemonic processes involving episodic memory that until now were assumed to require an intact hippocampus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial structure of genetic variation within populations, an important interacting influence on evolutionary and ecological processes, can be analyzed in detail by using spatial autocorrelation statistics. This paper characterizes the statistical properties of spatial autocorrelation statistics in this context and develops estimators of gene dispersal based on data on standing patterns of genetic variation. Large numbers of Monte Carlo simulations and a wide variety of sampling strategies are utilized. The results show that spatial autocorrelation statistics are highly predictable and informative. Thus, strong hypothesis tests for neutral theory can be formulated. Most strikingly, robust estimators of gene dispersal can be obtained with practical sample sizes. Details about optimal sampling strategies are also described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steady-state visual evoked potentials (SSVEPs) were recorded from the scalp of human subjects who were cued to attend to a rapid sequence of alphanumeric characters presented to one visual half-field while ignoring a concurrent sequence of characters in the opposite half-field. These two-character sequences were each superimposed upon a small square background that was flickered at a rate of 8.6 Hz in one half-field and 12 Hz in the other half-field. The amplitude of the frequency-coded SSVEP elicited by either of the task-irrelevant flickering backgrounds was significantly enlarged when attention was focused upon the character sequence at the same location. This amplitude enhancement with attention was most prominent over occipital-temporal scalp areas of the right cerebral hemisphere regardless of the visual field of stimulation. These findings indicate that the SSVEP reflects an enhancement of neural responses to all stimuli that fall within the "spotlight" of spatial attention, whether or not the stimuli are task-relevant. Recordings of the SSVEP provide a new approach for studying the neural mechanisms and functional properties of selective attention to multi-element visual displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the volume and location of hippocampal tissue required for normal acquisition of a spatial memory task. Ibotenic acid was used to make bilateral symmetric lesions of 20-100% of hippocampal volume. Even a small transverse block (minislab) of the hippocampus (down to 26% of the total) could support spatial learning in a water maze, provided it was at the septal (dorsal) pole of the hippocampus. Lesions of the septal pole, leaving 60% of the hippocampi intact, caused a learning deficit, although normal electrophysiological responses, synaptic plasticity, and preserved acetylcholinesterase staining argue for adequate function of the remaining tissue. Thus, with an otherwise normal brain, hippocampal-dependent spatial learning only requires a minislab of dorsal hippocampal tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.