11 resultados para rhomboideus major muscle

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin-like growth factor–binding protein-5 (IGFBP-5) has been shown to bind to fibroblast extracellular matrix (ECM). Extracellular matrix binding of IGFBP-5 leads to a decrease in its affinity for insulin-like growth factor-I (IGF-I), which allows IGF-I to better equilibrate with IGF receptors. When the amount of IGFBP-5 that is bound to ECM is increased by exogenous addition, IGF-I’s effect on fibroblast growth is enhanced. In this study we identified the specific basic residues in IGFBP-5 that mediate its binding to porcine smooth-muscle cell (pSMC) ECM. An IGFBP-5 mutant containing alterations of basic residues at positions 211, 214, 217, and 218 had the greatest reduction in ECM binding, although three other mutants, R214A, R207A/K211N, and K202A/R206N/R207A, also had major decreases. In contrast, three other mutants, R201A/K202N/R206N/R208A, and K217N/R218A and K211N, had only minimal reductions in ECM binding. This suggested that residues R207 and R214 were the most important for binding, whereas alterations in K211 and R218, which align near them, had minimal effects. To determine the effect of a reduction in ECM binding on the cellular replication response to IGF-I, pSMCs were transfected with the mutant cDNAs that encoded the forms of IGFBPs with the greatest changes in ECM binding. The ECM content of IGFBP-5 from cultures expressing the K211N, R214A, R217A/R218A, and K202A/R206N/R207A mutants was reduced by 79.6 and 71.7%, respectively, compared with cells expressing the wild-type protein. In contrast, abundance of the R201A/K202N/R206N/R208A mutant was reduced by only 14%. Cells expressing the two mutants with reduced ECM binding had decreased DNA synthesis responses to IGF-I, but the cells expressing the R201A/K202N/R206N/R208A mutant responded well to IGF-I. The findings suggest that specific basic amino acids at positions 207 and 214 mediate the binding of IGFBP-5 to pSMC/ECM. Smooth-muscle cells that constitutively express the mutants that bind weakly to ECM are less responsive to IGF-I, suggesting that ECM binding of IGFBP-5 is an important variable that determines cellular responsiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. βγ subunits of heterotrimeric G proteins (Gβγ) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gβγ signaling (βARKct), we evaluated the role of Gβγ in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gβγ. Furthermore, we studied the effects of in vivo adenoviral-mediated βARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the βARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gβγ plays a critical role in physiological VSM proliferation, and targeted Gβγ inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been suggested that the tethering caused by binding of the N-terminal region of smooth muscle caldesmon (CaD) to myosin and its C-terminal region to actin contributes to the inhibition of actin-filament movement over myosin heads in an in vitro motility assay. However, direct evidence for this assumption has been lacking. In this study, analysis of baculovirus-generated N-terminal and C-terminal deletion mutants of chicken-gizzard CaD revealed that the major myosin-binding site on the CaD molecule resides in a 30-amino acid stretch between residues 24 and 53, based on the very low level of binding of CaDΔ24–53 lacking the residues 24–53 to myosin compared with the level of binding of CaDΔ54–85 missing the adjacent residues 54–85 or of the full-length CaD. As expected, deletion of the region between residues 24 and 53 or between residues 54 and 85 had no effect on either actin-binding or inhibition of actomyosin ATPase activity. Deletion of residues 24–53 nearly abolished the ability of CaD to inhibit actin filament velocity in the in vitro motility experiments, whereas CaDΔ54–85 strongly inhibited actin filament velocity in a manner similar to that of full-length CaD. Moreover, CaD1–597, which lacks the major actin-binding site(s), did not inhibit actin-filament velocity despite the presence of the major myosin-binding site. These data provide direct evidence for the inhibition of actin filament velocity in the in vitro motility assay caused by the tethering of myosin to actin through binding of both the CaD N-terminal region to myosin and the C-terminal region to actin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have discovered that cells derived from the skeletal muscle of adult mice contain a remarkable capacity for hematopoietic differentiation. Cells prepared from muscle by enzymatic digestion and 5-day in vitro culture were harvested, and 18 × 103 cells were introduced into each of six lethally irradiated recipients together with 200 × 103 distinguishable whole bone marrow cells. After 6 or 12 weeks, all recipients showed high-level engraftment of muscle-derived cells representing all major adult blood lineages. The mean total contribution of muscle cell progeny to peripheral blood was 56 ± 20% (SD), indicating that the cultured muscle cells generated approximately 10- to 14-fold more hematopoietic activity than whole bone marrow. When bone marrow from one mouse was harvested and transplanted into secondary recipients, all recipients showed high-level multilineage engraftment (mean 40%), establishing the extremely primitive nature of these stem cells. We also show that muscle contains a population of cells with several characteristics of bone marrow-derived hematopoietic stem cells, including high efflux of the fluorescent dye Hoechst 33342 and expression of the stem cell antigens Sca-1 and c-Kit, although the cells lack the hematopoietic marker CD45. We propose that this population accounts for the hematopoietic activity generated by cultured skeletal muscle. These putative stem cells may be identical to muscle satellite cells, some of which lack myogenic regulators and could be expected to respond to hematopoietic signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell–cell interactions, mediated by members of the cadherin family of Ca2+-dependent adhesion molecules, play key roles in morphogenetic processes as well as in the transduction of long-range growth and differentiation signals. In muscle differentiation cell adhesion is involved in both early stages of myogenic induction and in later stages of myoblast interaction and fusion. In this study we have explored the involvement of a specific cadherin, namely N-cadherin, in myogenic differentiation. For that purpose we have treated different established lines of cultured myoblasts with beads coated with N-cadherin–specific ligands, including a recombinant N-cadherin extracellular domain, and anti-N-cadherin antibodies. Immunofluorescent labeling for cadherins and catenins indicated that treatment with the cadherin-reactive beads for several hours enhances the assembly of cell–cell adherens-type junctions. Moreover, immunofluorescence and immunoblotting analyses indicated that treatment with the beads for 12–24 h induces myogenin expression and growth arrest, which are largely independent of cell plating density. Upon longer incubation with the beads (2–3 d) a major facilitation in the expression of several muscle-specific sarcomeric proteins and in cell fusion into myotubes was observed. These results suggest that surface clustering or immobilization of N-cadherin can directly trigger signaling events, which promote the activation of a myogenic differentiation program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle tissue is the major site for insulin-stimulated glucose uptake in vivo, due primarily to the recruitment of the insulin-sensitive glucose transporter (GLUT4) to the plasma membrane. Surprisingly, virtually all cultured muscle cells express little or no GLUT4. We show here that adenovirus-mediated expression of the transcriptional coactivator PGC-1, which is expressed in muscle in vivo but is also deficient in cultured muscle cells, causes the total restoration of GLUT4 mRNA levels to those observed in vivo. This increased GLUT4 expression correlates with a 3-fold increase in glucose transport, although much of this protein is transported to the plasma membrane even in the absence of insulin. PGC-1 mediates this increased GLUT4 expression, in large part, by binding to and coactivating the muscle-selective transcription factor MEF2C. These data indicate that PGC-1 is a coactivator of MEF2C and can control the level of endogenous GLUT4 gene expression in muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smooth muscle cell plasticity is considered a prerequisite for atherosclerosis and restenosis following angioplasty and bypass surgery. Identification of transcription factors that specify one smooth muscle cell phenotype over another therefore may be of major importance in understanding the molecular basis of these vascular disorders. Homeobox genes exemplify one class of transcription factors that could govern smooth muscle cell phenotypic diversity. Accordingly, we screened adult and fetal human smooth muscle cell cDNA libraries with a degenerate oligonucleotide corresponding to a highly conserved region of the homeodomain with the idea that homeobox genes, if present, would display a smooth muscle cell phenotype-dependent pattern of expression. No homeobox genes were detected in the adult human smooth muscle cell library; however, five nonparalogous homeobox genes were uncovered from the fetal library (HoxA5, HoxA11, HoxB1, HoxB7, and HoxC9). Northern blotting of adult and fetal tissues revealed low and restricted expression of all five homeobox genes. No significant differences in transcripts of HoxA5, HoxA11, and HoxB1 were detected between adult or fetal human smooth muscle cells in culture. HoxB7 and HoxC9, however, showed preferential mRNA expression in fetal human smooth muscle cells that appeared to correlate with the age of the donor. This phenotype-dependent expression of homeobox genes was also noted in rat pup versus adult smooth muscle cells. While similar differences in gene expression have been reported between subsets of smooth muscle cells from rat vessels of different-aged animals or clones of rat smooth muscle, our findings represent a demonstration of a transcription factor distinguishing two human smooth muscle cell phenotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) proliferation is thought to play a major role in vascular restenosis after angioplasty and is a serious complication of the procedure. Developing antisense (AS) oligonucleotides as therapeutics is attractive because of the potentially high specificity of binding to their targets, and several investigators have reported inhibition of SMC proliferation in vitro and in vivo by using AS strategies. We report here the results of our experiments on vascular SMCs using AS oligonucleotides directed toward c-myb and c-myc. We found that significant inhibition of SMC proliferation occurred with these specific AS sequences but that this inhibition was clearly not via a hybridization-dependent AS mechanism. Rather, inhibition was due to the presence of four contiguous guanosine residues in the oligonucleotide sequence. This was demonstrated in vitro in primary cultures of SMCs and in arteries ex vivo. The ex vivo model developed here provides a rapid and effective system in which to screen potential oligonucleotide drugs for restenosis. We have further explored the sequence requirements of this non-AS effect and determined that phosphorothioate oligonucleotides containing at least two sets of three or four consecutive guanosine residues inhibit SMC proliferation in vitro and ex vivo. These results suggest that previous AS data obtained using these and similar, contiguous guanosine-containing AS sequences be reevaluated and that there may be an additional class of nucleic acid compounds that have potential as antirestenosis therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Junctions that mediate excitation-contraction (e-c) coupling are formed between the sarcoplasmic reticulum (SR) and either the surface membrane or the transverse (T) tubules in normal skeletal muscle. Two structural components of the junctions, the feet of the SR and the tetrads of T tubules, have been identified respectively as ryanodine receptors (RyRs, or SR calcium-release channels), and as groups of four dihydropyridine receptors (DHPRs, or voltage sensors of e-c coupling). A targeted mutation (skrrm1) of the gene for skeletal muscle RyRs in mice results in the absence of e-c coupling in homozygous offspring of transgenic parents. The mutant gene is expected to produce no functional RyRs, and we have named the mutant mice "dyspedic" because they lack feet--the cytoplasmic domain of RyRs anchored in the SR membrane. We have examined the development of junctions in skeletal muscle fibers from normal and dyspedic embryos. Surprisingly, despite the absence of RyRs, junctions are formed in dyspedic myotubes, but the junctional gap between the SR and T tubule is narrow, presumably because the feet are missing. Tetrads are also absent from these junctions. The results confirm the identity of RyRs and feet and a major role for RyRs and tetrads in e-c coupling. Since junctions form in the absence of feet and tetrads, coupling of SR to surface membrane and T tubules appears to be mediated by additional proteins, distinct from either RyRs or DHPRs.