2 resultados para reverse wave suppression

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five structurally related thiophene and furane analogues of the oxathiin carboxanilide derivative NSC 615985 (UC84) (designated UC10, UC68, UC81, UC42, and UC16) were identified as potent inhibitors of HIV-1 replication in cell culture and HIV-1 reverse transcriptase activity. These compounds were markedly active against a series of mutant HIV-1 strains, containing the Leu-100-->Ile, Val-106-->Ala, Glu-138-->Lys, or Tyr-181-->Cys mutations in their reverse transcriptase. However, the thiocarboxanilide derivatives selected for mutations at amino acid positions 100 (Leu-->Ile), 101 (Lys-->Ile/Glu), 103 (Lys-->Thr/Asp) and 141 (Gly-->Glu) in the HIV-1 reverse transcriptase. The compounds completely suppressed HIV-1 replication and prevented the emergence of resistant virus strains when used at 1.3-6.6 microM--that is, 10- to 25-fold lower than the concentration required for nevirapine and bis(heteroaryl)piperazine (BHAP) U90152 to do so. If UC42 was combined with the [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"- oxathiole-2",2"-dioxide)]-beta-D-pentofuranosyl (TSAO) derivative of N3-methylthymine (TSAO-m3T), virus breakthrough could be prevented for a much longer time, and at much lower concentrations, than if the compounds were used individually. Virus breakthrough could be suppressed for even longer, and at lower drug concentrations, if BHAP was added to the combination of UC42 with TSAO-m3T, which points to the feasibility of two- or three-drug combinations in preventing virus breakthrough and resistance development.