48 resultados para retinol deficiency

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A is required for reproduction and normal embryonic development. We have determined that all-trans-retinoic acid (atRA) can support development of the mammalian embryo to parturition in vitamin A-deficient (VAD) rats. At embryonic day (E) 0.5, VAD dams were fed purified diets containing either 12 μg of atRA per g of diet (230 μg per rat per day) or 250 μg of atRA per g of diet (4.5 mg per rat per day) or were fed the purified diet supplemented with a source of retinol (100 units of retinyl palmitate per day). An additional group was fed both 250 μg of atRA per g of diet in combination with retinyl palmitate. Embryonic survival to E12.5 was similar for all groups. However, embryonic development in the group fed 12 μg of atRA per g of diet was grossly abnormal. The most notable defects were in the region of the hindbrain, which included a loss of posterior cranial nerves (IX, X, XI, and XII) and postotic pharyngeal arches as well as the presence of ectopic otic vesicles and a swollen anterior cardinal vein. All embryonic abnormalities at E12.5 were prevented by feeding pharmacological amounts of atRA (250 μg/g diet) or by supplementation with retinyl palmitate. Embryos from VAD dams receiving 12 μg of atRA per g of diet were resorbed by E18.5, whereas those in the group fed 250 μg of atRA per g of diet survived to parturition but died shortly thereafter. Equivalent results were obtained by using commercial grade atRA or atRA that had been purified to eliminate any potential contamination by neutral retinoids, such as retinol. Thus, 250 μg of atRA per g of diet fed to VAD dams (≈4.5 mg per rat per day) can prevent the death of embryos at midgestation and prevents the early embryonic abnormalities that arise when VAD dams are fed insufficient amounts of atRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presomitic and 3- to 12-somite pair cultured mouse embryos were deprived of retinoic acid (RA) by yolk-sac injections of antisense oligodeoxynucleotides for retinol binding protein (RBP). Inhibition of yolk-sac RBP synthesis was verified by immunohistochemistry, and the loss of activity of a lacZ-coupled RA-sensitive promoter demonstrated that embryos rapidly became RA-deficient. This deficiency resulted in malformations of the vitelline vessels, cranial neural tube, and eye, depending upon the stage of embryonic development at the time of antisense injection. Addition of RA to the culture medium at the time of antisense injection restored normal development implicating the role of RBP in embryonic RA synthesis. Furthermore, the induced RA deficiency resulted in early down-regulation of developmentally important genes including TGF-beta1 and Shh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligand-controlled retinoic acid (RA) receptors and retinoid X receptors are important for several physiological processes, including normal embryonic development, but little is known about how their ligands, all-trans and 9-cis RA, are generated. Here we report the identification of a stereo-specific 9-cis retinol dehydrogenase, which is abundantly expressed in embryonic tissues known to be targets in the retinoid signaling pathway. The membrane-bound enzyme is a member of the short-chain alcohol dehydrogenase/reductase superfamily, able to oxidize 9-cis retinol into 9-cis retinaldehyde, an intermediate in 9-cis RA biosynthesis. Analysis by nonradioactive in situ hybridization in mouse embryos shows that expression of the enzyme is temporally and spatially well controlled during embryogenesis with prominent expression in parts of the developing central nervous system, sensory organs, somites and myotomes, and several tissues of endodermal origin. The identification of this enzyme reveals a pathway in RA biosynthesis, where 9-cis retinol is generated for subsequent oxidation to 9-cis RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From early in the AIDS epidemic, psychosocial stressors have been proposed as contributors to the variation in disease course. To test this hypothesis, rhesus macaques were assigned to stable or unstable social conditions and were inoculated with the simian immunodeficiency virus. Animals in the unstable condition displayed more agonism and less affiliation, shorter survival, and lower basal concentrations of plasma cortisol compared with stable animals. Early after inoculation, but before the emergence of group differences in cortisol levels, animals receiving social threats had higher concentrations of simian immunodeficiency virus RNA in plasma, and those engaging in affiliation had lower concentrations. The results indicate that social factors can have a significant impact on the course of immunodeficiency disease. Socially induced changes in pituitary–adrenal hormones may be one mechanism mediating this relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SEK1 (MKK4/JNKK) is a mitogen-activated protein kinase activator that has been shown to participate in vitro in two stress-activated cascades terminating with the SAPK and p38 kinases. To define the role of SEK1 in vivo, we studied stress-induced signaling in SEK1−/− embryonic stem and fibroblast cells and evaluated the phenotype of SEK1−/− mouse embryos during development. Studies of SEK1−/− embryonic stem cells demonstrated defects in stimulated SAPK phosphorylation but not in the phosphorylation of p38 kinase. In contrast, SEK1−/− fibroblasts exhibited defects in both SAPK and p38 phosphorylation, demonstrating that crosstalk exists between the stress-activated cascades. Tumor necrosis factor α and interleukin 1 stimulation of both stress-activated cascades are severely affected in the SEK1−/− fibroblast cells. SEK1 deficiency leads to embryonic lethality after embryonic day 12.5 and is associated with abnormal liver development. This phenotype is similar to c-jun null mouse embryos and suggests that SEK1 is required for phosphorylation and activation of c-jun during the organo-genesis of the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of prothrombin (FII) to the serine protease, thrombin (FIIa), is a key step in the coagulation cascade because FIIa triggers platelet activation, converts fibrinogen to fibrin, and activates regulatory pathways that both promote and ultimately suppress coagulation. However, several observations suggest that FII may serve a broader physiological role than simply stemming blood loss, including the identification of multiple G protein-coupled, thrombin-activated receptors, and the well-documented mitogenic activity of FIIa in in vitro test systems. To explore in greater detail the physiological roles of FII in vivo, FII-deficient (FII−/−) mice were generated. Inactivation of the FII gene leads to partial embryonic lethality with more than one-half of the FII−/− embryos dying between embryonic days 9.5 and 11.5. Bleeding into the yolk sac cavity and varying degrees of tissue necrosis were observed in many FII−/− embryos within this gestational time frame. However, at least one-quarter of the FII−/− mice survived to term, but ultimately they, too, developed fatal hemorrhagic events and died within a few days of birth. This study directly demonstrates that FII is important in maintaining vascular integrity during development as well as postnatal life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deficiency of blood coagulation factor V or tissue factor causes the death of mouse embryos by 10.5 days of gestation, suggesting that part of the blood coagulation system is necessary for development. This function is proposed to require either generation of the serine protease thrombin and cell signaling through protease-activated receptors or an activity of tissue factor that is distinct from blood clotting. We find that murine deficiency of prothrombin clotting factor 2 (Cf2) was associated with the death of approximately 50% of Cf2−/− embryos by embryonic day 10.5 (E10.5), and surviving embryos had characteristic defects in yolk sac vasculature. Most of the remaining Cf2−/− embryos died by E15.5, but those surviving to E18.5 appeared normal. The rare Cf2−/− neonates died of hemorrhage on the first postnatal day. These studies suggest that a part of the blood coagulation system is adapted to perform a developmental function. Other mouse models show that the absence of platelets or of fibrinogen does not cause fetal wastage. Therefore, the role of thrombin in development may be independent of its effects on blood coagulation and instead may involve signal transduction on cells other than platelets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Millions of people worldwide suffer from nutritional imbalances of essential metals like zinc. These same metals, along with pollutants like cadmium and lead, contaminate soils at many sites around the world. In addition to posing a threat to human health, these metals can poison plants, livestock, and wildlife. Deciphering how metals are absorbed, transported, and incorporated as protein cofactors may help solve both of these problems. For example, edible plants could be engineered to serve as better dietary sources of metal nutrients, and other plant species could be tailored to remove metal ions from contaminated soils. We report here the cloning of the first zinc transporter genes from plants, the ZIP1, ZIP2, and ZIP3 genes of Arabidopsis thaliana. Expression in yeast of these closely related genes confers zinc uptake activities. In the plant, ZIP1 and ZIP3 are expressed in roots in response to zinc deficiency, suggesting that they transport zinc from the soil into the plant. Although expression of ZIP2 has not been detected, a fourth related Arabidopsis gene identified by genome sequencing, ZIP4, is induced in both shoots and roots of zinc-limited plants. Thus, ZIP4 may transport zinc intracellularly or between plant tissues. These ZIP proteins define a family of metal ion transporters that are found in plants, protozoa, fungi, invertebrates, and vertebrates, making it now possible to address questions of metal ion accumulation and homeostasis in diverse organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using antisense RNA, Lck-deficient transfectants of a T helper 2 (Th2) clone have been derived and shown to have a qualitative defect in the T cell receptor signaling pathway. A striking feature observed only in Lck-deficient T cells was the presence of a constitutively tyrosine-phosphorylated 32-kDa protein. In the present study, we provide evidence that this aberrantly hyperphosphorylated protein is p34cdc2 (cdc2) a key regulator of cell-cycle progression. Lck-deficient transfectants expressed high levels of cdc2 protein and its regulatory units, cyclins A and B. The majority of cdc2, however, was tyrosine-phosphorylated and therefore enzymatically inactive. The transfectants were significantly larger than the parental cells and contained 4N DNA. These results establish that a deficiency in Lck leads to a cell-cycle arrest in G2. Moreover, transfected cells were hypersusceptible to apoptosis when activated through the T cell receptor. Importantly, however, this hypersusceptibility was largely reversed in the presence of T cell growth factors. These findings provide evidence that, in mature T lymphocytes, cell-cycle progression through the G2–M check point requires expression of the Src-family protein tyrosine kinase, Lck. This requirement is Lck-specific; it is observed under conditions in which the closely related Fyn kinase is expressed normally, evincing against a redundancy of function between these two kinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test directly whether fibrin(ogen) is a key binding site for apolipoprotein(a) [apo(a)] in vessel walls, apo(a) transgenic mice and fibrinogen knockout mice were crossed to generate fibrin(ogen)-deficient apo(a) transgenic mice and control mice. In the vessel wall of apo(a) transgenic mice, fibrin(ogen) deposition was found to be essentially colocalized with focal apo(a) deposition and fatty-streak type atherosclerotic lesions. Fibrinogen deficiency in apo(a) transgenic mice decreased the average accumulation of apo(a) in vessel walls by 78% and the average lesion (fatty streak type) development by 81%. Fibrinogen deficiency in wild-type mice did not significantly reduce lesion development. Our results suggest that fibrin(ogen) provides one of the major sites to which apo(a) binds to the vessel wall and participates in the generation of atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen deficiency caused by ovariectomy (OVX) results in a marked bone loss due to stimulated bone resorption by osteoclasts. During our investigations of the pathogenesis of bone loss in estrogen deficiency, we found that OVX selectively stimulates B-lymphopoiesis which results in marked accumulation of B220-positive pre-B cells in mouse bone marrow. To examine the possible correlation between stimulated B-lymphopoiesis and bone loss, 8-week-old female mice were treated with interleukin (IL) 7, which stimulates B-lymphopoiesis in bone marrow. We also examined bone mass in IL-7 receptor-knockout mice that exhibit marked suppression of B-lymphopoiesis in the bone marrow. The increased B-lymphopoiesis induced by IL-7 administration resulted in marked bone loss by stimulation of osteoclastic bone resorption in mice with intact ovarian function. The changes in both B-lymphopoiesis and bone mass in IL-7-treated female mice were similar to those in age-matched OVX mice. In contrast, the trabecular bone volume of the femur was greatly increased in both female and male IL-7 receptor-knockout mice when compared with the respective wild-type and heterozygous littermates. These results show that the perturbation of B-lymphopoiesis in the bone marrow is closely linked to the change in bone mass. We propose here that the increased B-lymphopoiesis due to estrogen deficiency is involved in the mechanism of stimulated bone resorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical link between hemostatic factors and atherosclerosis has been inferred from a variety of indirect observations, including the expression of procoagulant and fibrinolytic factors within atherosclerotic vessels, the presence of fibrin in intimal lesions, and the cellular infiltration of mural thrombi leading to their incorporation into developing plaques. To directly examine the role of the key fibrinolytic factor, plasminogen, in atherogenesis, plasminogen-deficient mice were crossed to hypercholesterolemic, apolipoprotein E-deficient mice predisposed to atherosclerosis. We report that the loss of plasminogen greatly accelerates the formation of intimal lesions in apolipoprotein E-deficient animals, whereas plasminogen deficiency alone does not cause appreciable atherosclerosis. These studies provide direct evidence that circulating hemostatic factors strongly influence vessel wall disease in the context of a disorder in lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a Hungarian family with triosephosphate isomerase (TPI) deficiency, two compound heterozygote brothers were found with the same severe decrease in TPI activity, but only one of them had the classical symptoms. In search for the pathogenesis of the differing phenotype of the same genotypic TPI deficiency, an increase in red cell membrane fluidity was found. There were roughly 100% and 30% more 16:0/20:4 and 18:0/20:4 diacyl-phosphatidylcholine species in erythrocytes from the two TPI-deficient brothers than in the probes from healthy controls. The activities of acethylcholinesterase and calmodulin induced Ca2+ ATPase were significantly enhanced in erythrocytes from the propositus as compared with those of the neurologically symptom-free brother and other members of the TPI-deficient family as well as to those from healthy controls. Both enzymes are crucially involved in the function of nerve cells. The observed differences in membrane fluidity and enzyme activities between the erythrocytes from the phenotypically differing TPI-deficient brothers underline the importance of investigations into the effect of biophysical changes in the lipid environment of the membrane proteins on the development of disseminated focal neurological disorders of unknown pathogenic origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe jaundice leading to kernicterus or death in the newborn is the most devastating consequence of glucose-6-phosphate dehydrogenase (EC 1.1.1.49; G-6-PD) deficiency. We asked whether the TA repeat promoter polymorphism in the gene for uridinediphosphoglucuronate glucuronosyltransferase 1 (EC 2.4.1.17; UDPGT1), associated with benign jaundice in adults (Gilbert syndrome), increases the incidence of neonatal hyperbilirubinemia in G-6-PD deficiency. DNA from term neonates was analyzed for UDPGT1 polymorphism (normal homozygotes, heterozygotes, variant homozygotes), and for G-6-PD Mediterranean deficiency. The variant UDPGT1 promoter allele frequency was similar in G-6-PD-deficient and normal neonates. Thirty (22.9%) G-6-PD deficient neonates developed serum total bilirubin ≥ 257 μmol/liter, vs. 22 (9.2%) normals (P = 0.0005). Of those with the normal homozygous UDPGT1 genotype, the incidence of hyperbilirubinemia was similar in G-6-PD-deficients and controls (9.7% and 9.9%). In contrast, in the G-6-PD-deficient neonates, those with the heterozygous or homozygous variant UDPGT1 genotype had a higher incidence of hyperbilirubinemia than corresponding controls (heterozygotes: 31.6% vs. 6.7%, P < 0.0001; variant homozygotes: 50% vs. 14.7%, P = 0.02). Among G-6-PD-deficient infants the incidence of hyperbilirubinemia was greater in those with the heterozygous (31.6%, P = 0.006) or variant homozygous (50%, P = 0.003) UDPGT1 genotype than in normal homozygotes. In contrast, among those normal for G-6-PD, the UDPGT1 polymorphism had no significant effect (heterozygotes: 6.7%; variant homozygotes: 14.7%). Thus, neither G-6-PD deficiency nor the variant UDPGT1 promoter, alone, increased the incidence of hyperbilirubinemia, but both in combination did. This gene interaction may serve as a paradigm of the interaction of benign genetic polymorphisms in the causation of disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3-yr-old female patient exhibited interleukin 12 (IL-12) deficiency that was associated with recurrent episodes of pneumococcal pneumonia with sepsis and other infections in the absence of fevers. The patient’s peripheral blood mononuclear cells (PBMCs) exhibited normal proliferative responses to antigens. Immune responses, including in vivo production of antibodies to diphtheria, tetanus, or pneumococcal antigens, were normal. Ig levels and B cell and T cell phenotypes were also normal. In contrast, IL-12 p70 heterodimer production was undetectable by using supernatants of the patient’s stimulated PBMCs when compared with control cells treated similarly. Although present, interferon γ (IFN-γ) was reduced. The addition of recombinant IFN-γ to control cells enhanced the production of IL-12 by up to sixfold. By contrast, IL-12 was undetectable in supernatants of the patient’s cells in the presence of recombinant IFN-γ. IL-12 p40 subunit mRNA by using the patient’s PBMCs after stimulation with Staphylococcus aureus Cowan strain 1 or lipopolysaccharide was also undetectable by reverse transcription–PCR when compared with control cells. Production of IL-2, IL-6, tumor necrosis factor α, or IFN-γ of the patient’s PBMCs after appropriate stimulation was observed. This patient has either a defect in Staphylococcus aureus Cowan strain 1-lipopolysaccharide- or staphylococcal enterotoxin A-induced signaling pathways for the activation of IL-12 p40 gene expression, or an abnormality in the IL-12 p40 gene itself.