3 resultados para resonant Raman scattering

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural changes in the retinal chromophore during the formation of the bathorhodopsin intermediate (bathoRT) in the room-temperature rhodopsin (RhRT) photosequence (i.e., vision) are examined using picosecond time-resolved coherent anti-Stokes Raman scattering. Specifically, the retinal structure assignable to bathoRT following 8-ps excitation of RhRT is measured via vibrational Raman spectroscopy at a 200-ps time delay where the only intermediate present is bathoRT. Significant differences are observed between the C=C stretching frequencies of the retinal chromophore at low temperature where bathorhodopsin is stabilized and at room temperature where bathorhodopsin is a transient species in the RhRT photosequence. These vibrational data are discussed in terms of the formation of bathoRT, an important step in the energy storage/transduction mechanism of RhRT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intracellular water concentrations in single living cells were visualized by nonlinear coherent anti-Stokes Raman scattering (CARS) microscopy. In combination with isotopic exchange measurements, CARS microscopy allowed the real-time observation of transient intracellular hydrodynamics at a high spatial resolution. Studies of the hydrodynamics in the microorganism Dictyostelium discoideum indicated the presence of a microscopic region near the plasma membrane where the mobility of water molecules is severely restricted. Modeling the transient hydrodynamics eventuated in the determination of cell-specific cytosolic diffusion and plasma membrane permeability constants. Our experiments demonstrate that CARS microscopy offers an invaluable tool for probing single-cell water dynamics.