20 resultados para requirements incorrectness
em National Center for Biotechnology Information - NCBI
Resumo:
Oleamide is an endogenous fatty acid primary amide that possesses sleep-inducing properties in animals and that has been shown to effect serotonergic receptor responses and block gap junction communication. Herein, the potentiation of the 5-HT1A receptor response is disclosed, and a study of the structural features of oleamide required for potentiation of the 5-HT2A and 5-HT1A response to serotonin (5-HT) is described. Of the naturally occurring fatty acids, the primary amide of oleic acid (oleamide) is the most effective at potentiating the 5-HT2A receptor response. The structural features required for activity were found to be highly selective. The presence, position, and stereochemistry of the Δ9-cis double bond is required, and even subtle structural variations reduce or eliminate activity. Secondary or tertiary amides may replace the primary amide but follow a well defined relationship requiring small amide substituents, suggesting that the carboxamide serves as a hydrogen bond acceptor but not donor. Alternative modifications at the carboxamide as well as modifications of the methyl terminus or the hydrocarbon region spanning the carboxamide and double bond typically eliminate activity. A less extensive study of the 5-HT1A potentiation revealed that it is more tolerant and accommodates a wider range of structural modifications. An interesting set of analogs was identified that inhibit rather than potentiate the 5-HT2A, but not the 5-HT1A, receptor response, further suggesting that such analogs may permit the selective modulation of serotonin receptor subtypes and even have opposing effects on the different subtypes.
Resumo:
Peroxynitrite-dependent formation of nitrotyrosine has been associated with inactivation of various enzymes and proteins possessing functionally important tyrosines. We have previously reported an enzymatic activity modifying the nitrotyrosine residues in nitrated proteins. Here we are describing a nonenzymatic reduction of nitrotyrosine to aminotyrosine, which depends on heme and thiols. Various heme-containing proteins can mediate the reaction, although the reaction also is catalyzed by heme. The reaction is most effective when vicinal thiols are used as reducing agents, although ascorbic acid also can replace thiols with lesser efficiency. The reaction could be inhibited by (z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1, but not other tested NO donors. HPLC with electrochemical detection analysis of the reaction identified aminotyrosine as the only reaction product. The reduction of nitrotyrosine was most effective at a pH close to physiological and was markedly decreased in acidic conditions. Various nitrophenol compounds also were modified in this reaction. Understanding the mechanism of this reaction could help define the enzymatic modification of nitrotyrosine-containing proteins. Furthermore, this also could assist in understanding the role of nitrotyrosine formation and reversal in the regulation of various proteins containing nitrotyrosine. It also could help define the role of nitric oxide and other reactive species in various disease states.
Resumo:
In the cytoplasm of cells of different types, discrete clusters of inositol 1,4,5-trisphosphate-sensitive Ca2+ channels generate Ca2+ signals of graded size, ranging from blips, which involve the opening of only one channel, to moderately larger puffs, which result from the concerted opening of a few channels in the same cluster. These channel clusters are of unknown size or geometrical characteristics. The aim of this study was to estimate the number of channels and the interchannel distance within such a cluster. Because these characteristics are not attainable experimentally, we performed computer stochastic simulations of Ca2+ release events. We conclude that, to ensure efficient interchannel communication, as experimentally observed, a typical cluster should contain two or three tens of inositol 1,4,5-trisphosphate-sensitive Ca2+ channels in close contact.
Resumo:
The genetic properties of the non-Mendelian element, [URE3], suggest that it is a prion (infectious protein) form of Ure2p, a mediator of nitrogen regulation in Saccharomyces cerevisiae. Into a ure2Δ strain (necessarily lacking [URE3]), we introduced a plasmid overproducing Ure2p. This induced the frequent “spontaneous generation” of [URE3], with properties identical to the original [URE3]. Altering the translational frame only in the prion-inducing domain of URE2 shows that it is Ure2 protein (and not URE2 RNA) that induces appearance of [URE3]. The proteinase K-resistance of Ure2p is unique to [URE3] strains and is not seen in nitrogen regulation of normal strains. The prion-inducing domain of Ure2p (residues 1–65) can propagate [URE3] in the absence of the C-terminal part of the molecule. In contrast, the C-terminal part of Ure2p cannot be converted to the prion (inactive) form without the prion-inducing domain covalently attached. These experiments support the prion model for [URE3] and extend our understanding of its propagation.
Resumo:
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.
Resumo:
In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1–1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1–1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1–1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1–737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication.
Resumo:
The amino acid sequence requirements of the transmembrane (TM) domain and cytoplasmic tail (CT) of the hemagglutinin (HA) of influenza virus in membrane fusion have been investigated. Fusion properties of wild-type HA were compared with those of chimeras consisting of the ectodomain of HA and the TM domain and/or CT of polyimmunoglobulin receptor, a nonviral integral membrane protein. The presence of a CT was not required for fusion. But when a TM domain and CT were present, fusion activity was greater when they were derived from the same protein than derived from different proteins. In fact, the chimera with a TM domain of HA and truncated CT of polyimmunoglobulin receptor did not support full fusion, indicating that the two regions are not functionally independent. Despite the fact that there is wide latitude in the sequence of the TM domain that supports fusion, a point mutation of a semiconserved residue within the TM domain of HA inhibited fusion. The ability of a foreign TM domain to support fusion contradicts the hypothesis that a pore is composed solely of fusion proteins and supports the theory that the TM domain creates fusion pores after a stage of hemifusion has been achieved.
Resumo:
Integrins and growth factor receptors are important participants in cellular adhesion and migration. The EGF receptor (EGFR) family of tyrosine kinases and the β1-integrin adhesion receptors are of particular interest, given the implication for their involvement in the initiation and progression of tumorigenesis. We used adhesion and chemotaxis assays to further elucidate the relationship between these two families of transmembrane signaling molecules. Specifically, we examined integrin-mediated adhesive and migratory characteristics of the metastatic breast carcinoma cell line MDA-MB-435 in response to stimulation with growth factors that bind to and activate the EGFR or erbB3 in these cells. Although ligand engagement of the EGFR stimulated modest β1-dependent increases in cell adhesion and motility, heregulin-β (HRGβ) binding to the erbB3 receptor initiated rapid and potent induction of breast carcinoma cell adhesion and migration and required dimerization of erbB3 with erbB2. Pharmacologic inhibitors of phosphoinositide 3-OH kinase (PI 3-K) or transient expression of dominant negative forms of PI 3-K inhibited both EGF- and HRGβ-mediated adhesion and potently blocked HRGβ- and EGF-induced cell motility. Our results illustrate the critical role of PI 3-K activity in signaling pathways initiated by the EGFR or erbB3 to up-regulate β1-integrin function.
Resumo:
Cell adhesion to thrombospondin-1 (TSP-1) correlates with assembly of cell–substratum contact structures that contain fascin microspikes. In this analysis, cell-matrix requirements for assembly of fascin microspikes were examined in detail. In six cell lines, cell spreading on a TSP-1 substratum correlated with expression of fascin protein and formation of fascin microspikes. Microspikes were not formed by H9c2 cells adherent on fibronectin, vitronectin, collagen IV, or platelet factor 4. However, both fascin microspikes and focal contacts were assembled by cells adherent on laminin-1. Using mixed substrata containing different proportions of TSP-1, and fibronectin, fascin microspike formation by H9c2 and C2C12 cells was found to be reduced on substrata containing 25% fibronectin and abolished on substrata containing 75% fibronectin. Adhesion to intermediate mixtures of TSP-1 and fibronectin resulted in coassembly of fascin microspikes and focal contacts, colocalization of fascin with actin stress fiber bundles and altered distributions of β1 integrins, cortical α-actinin, and tropomyosin. In cells adherent on 50% TSP-1:50% fibronectin, GRGDSP peptide treatment decreased focal contact assembly and altered cytoskeletal organization but did not inhibit microspike assembly. Treatment with chondroitin sulfate A or p-nitrophenol β-d-xylopyranoside decreased microspike formation and modified cytoskeletal organization but did not inhibit focal contact formation. In polarized migratory and postmitotic C2C12 cells, fascin microspikes and ruffles were localized at leading edges and TSP matrix deposition was also concentrated in this region. Depletion of matrix TSP by heparin treatment correlated with decreased microspike formation and cell motility. Thus, the balance of adhesive receptors ligated at the cell surface during initial cell–matrix attachment serves to regulate the type of substratum adhesion contact assembled and subsequent cytoskeletal organization. A role for fascin microspikes in cell motile behavior is indicated.
Resumo:
Stimulation of naive T cells by antigen-presenting cells (APC) is thought to involve two qualitatively different signals: signal one results from T-cell receptor (TCR) recognition of antigenic peptides bound to major histocompatibility complex (MHC) molecules, whereas signal two reflects contact with one or more costimulatory molecules. The requirements for stimulating naive T cells were studied with MHC class I-restricted CD8+ T cells from a T-cell receptor transgenic line, with defined peptides as antigen and transfected Drosophila cells as APC. Three main findings are reported. First, stimulation of naive T cells via signal one alone (MHC plus peptide) was essentially nonimmunogenic; thus T cells cultured with peptides presented by MHC class I-transfected Drosophila APC lacking costimulatory molecules showed little or no change in their surface phenotype. Second, cotransfection of two costimulatory molecules, B7-1 and intercellular adhesion molecule 1 (ICAM-1), converted class I+ Drosophila cells to potent APC capable of inducing strong T-proliferative responses and cytokine (interleukin 2) production. Third, B7-1 and ICAM-1 acted synergistically, indicating that signal two is complex; synergy between B7-1 and ICAM-1 varied from moderate to extreme and was influenced by both the dose and affinity of the peptide used and the parameter of T-cell activation studied. Transfected Drosophila cells are thus a useful tool for examining the minimal APC requirements for naive T cells.
Resumo:
The structural basis for the T cell response to glycolipid antigens (Ags) remains poorly understood. T lymphocytes autoreactive for mouse CD1 (mCD1.1) or reactive for the glycosphingolipid αgalactosylceramide (α-GalCer) presented by mCD1.1 have been described previously. In this paper it is shown that mutations at the top of the α helices and in the bottom of the Ag-binding groove can disrupt both mCD1.1 autoreactivity and α-GalCer recognition. The locations of the positions that affect T cell responses indicate that recognition of mCD1.1 is not likely to be unconventional or superantigen-like. Furthermore, the effects of the bottom of the pocket mutation suggest that the autoreactive response could require an autologous ligand, and they indicate that α-GalCer binds to the groove of mCD1.1, most likely with the shorter 18-carbon hydrophobic chain in the A′ pocket. Natural killer T cell hybridomas with identical T cell antigen receptor (TCR) α chains and different β chains respond differently to α-GalCer presented by mCD1.1 mutants. This finding indicates a role for TCR β in defining natural killer T cell specificity, despite the more restricted diversity of the α chains in these cells. Overall, the data are consistent with a mode of lipoglycan recognition similar to that proposed for glycopeptides, in which the TCR α and β chains survey a surface composed of both mCD1.1 and the carbohydrate portion of α-GalCer.
Resumo:
The Rev protein of HIV-1 actively shuttles between nucleus and cytoplasm and mediates the export of unspliced retroviral RNAs. The localization of shuttling proteins such as Rev is controlled by the relative rates of nuclear import and export. To study nuclear export in isolation, we generated cell lines expressing a green fluorescent protein-labeled chimeric protein consisting of HIV-1 Rev and a hormone-inducible nuclear localization sequence. Steroid removal switches off import thus allowing direct visualization of the Rev export pathway in living cells. After digitonin permeabilization of these cells, we found that a functional nuclear export sequence (NES), ATP, and fractionated cytosol were sufficient for nuclear export in vitro. Nuclear pore-specific lectins and leptomycin B were potent export inhibitors. Nuclear export was not inhibited by antagonists of calcium metabolism that block nuclear import. These data further suggest that nuclear pores do not functionally close when luminal calcium stores are depleted. The distinct requirements for nuclear import and export argue that these competing processes may be regulated independently. This system should have wide applicability for the analysis of nuclear import and export.
Resumo:
Although Archaea are prokaryotic and resemble Bacteria morphologically, their transcription apparatus is remarkably similar to those of eukaryotic cell nuclei. Because some Archaea exist in environments with temperatures of around 100°C, they are likely to have evolved unique strategies for transcriptional control. Here, we investigate the effects of temperature and DNA template topology in a thermophilic archaeal transcription system. Significantly, and in marked contrast with characterized eucaryal systems, archaeal DNA template topology has negligible effect on transcription levels at physiological temperatures using highly purified polymerase and recombinant transcription factors. Furthermore, archaeal transcription does not require hydrolysis of the β-γ phosphoanhydride bond of ATP. However, at lower temperatures, negatively supercoiled templates are transcribed more highly than those that are positively supercoiled. Notably, the block to transcription on positively supercoiled templates at lowered temperatures is at the level of polymerase binding and promoter opening. These data imply that Archaea do not possess a functional homologue of transcription factor TFIIH, and that for the promoters studied, transcription is mediated by TATA box-binding protein, transcription factor TFB, and RNA polymerase alone. Furthermore, they suggest that the reduction of plasmid linking number by hyperthermophilic Archaea in vivo in response to cold shock is a mechanism to maintain gene expression under these adverse circumstances.
Resumo:
Different truncated and conformationally constrained analogs of corticotropin-releasing factor (CRF) were synthesized on the basis of the amino acid sequences of human/rat CRF (h/rCRF), ovine CRF (oCRF), rat urocortin (rUcn), or sauvagine (Svg) and tested for their ability to displace [125I-Tyr0]oCRF or [125I-Tyr0]Svg from membrane homogenates of human embryonic kidney (HEK) 293 cells stably transfected with cDNA coding for rat CRF receptor, type 1 (rCRFR1), or mouse CRF receptor, type 2β (mCRFR2β). Furthermore, the potency of CRF antagonists to inhibit oCRF- or Svg-stimulated cAMP production of transfected HEK 293 cells expressing either rCRFR1 (HEK-rCRFR1 cells) or mCRFR2β (HEK-mCRFR2β cells) was determined. In comparison with astressin, which exhibited a similar affinity to rCRFR1 (Kd = 5.7 ± 1.6 nM) and mCRFR2β (Kd = 4.0 ± 2.3 nM), [dPhe11,His12]Svg(11–40), [dLeu11]Svg(11–40), [dPhe11]Svg(11–40), and Svg(11–40) bound, respectively, with a 110-, 80-, 68-, and 54-fold higher affinity to mCRFR2β than to rCRFR1. The truncated analogs of rUcn displayed modest preference (2- to 7-fold) for binding to mCRFR2β. In agreement with the results of these binding experiments, [dPhe11,His12]Svg(11–40), named antisauvagine-30, was the most potent and selective ligand to suppress agonist-induced adenylate cyclase activity in HEK cells expressing mCRFR2β.