2 resultados para reproductive cycle

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genome expression of positive-stranded RNA viruses starts with translation rather than transcription. For some viruses, the genome is the only viral mRNA and expression is regulated primarily at the translational level and by limited proteolysis of polyproteins. Other virus groups also generate subgenomic mRNAs later in the reproductive cycle. For nidoviruses, subgenomic mRNA synthesis (transcription) is discontinuous and yields a 5′ and 3′ coterminal nested set of mRNAs. Nidovirus transcription is not essential for genome replication, which relies on the autoprocessing products of two replicase polyproteins that are translated from the genome. We now show that the N-terminal replicase subunit, nonstructural protein 1 (nsp1), of the nidovirus equine arteritis virus is in fact dispensable for replication but crucial for transcription, thereby coupling replicase expression and subgenomic mRNA synthesis in an unprecedented manner. Nsp1 is composed of two papain-like protease domains and a predicted N-terminal zinc finger, which was implicated in transcription by site-directed mutagenesis. The structural integrity of nsp1 is essential, suggesting that the protease domains form a platform for the zinc finger to operate in transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypothalamic hormone gonadotropin-releasing hormone (GnRH) is released in a pulsatile fashion, with its frequency varying throughout the reproductive cycle. Varying pulse frequencies and amplitudes differentially regulate the biosynthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by pituitary gonadotropes. The mechanism by which this occurs remains a major question in reproductive physiology. Previous studies have been limited by lack of available cell lines that express the LH and FSH subunit genes and respond to GnRH. We have overcome this limitation by transfecting the rat pituitary GH3 cell line with rat GnRH receptor (GnRHR) cDNA driven by a heterologous promoter. These cells, when cotransfected with regulatory regions of the common alpha, LH beta, or FSH beta subunit gene fused to a luciferase reporter gene, respond to GnRH with an increase in luciferase activity. Using this model, we demonstrate that different cell surface densities of the GnRHR result in the differential regulation of LH and FSH subunit gene expression by GnRH. This suggests that the differential regulation of gonadotropin subunit gene expression by GnRH observed in vivo in rats may, in turn, be mediated by varying gonadotrope cell surface GnRHR concentrations. This provides a physiologic mechanism by which a single ligand can act through a single receptor to regulate differentially the production of two hormones in the same cell.