5 resultados para random phase approximation

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Divalent cations are thought essential for motile function of leukocytes in general, and for the function of critical adhesion molecules in particular. In the current study, under direct microscopic observation with concomitant time-lapse video recording, we examined the effects of 10 mM EDTA on locomotion of human blood polymorphonuclear leukocytes (PMN). In very thin slide preparations, EDTA did not impair either random locomotion or chemotaxis; motile behavior appeared to benefit from the close approximation of slide and coverslip (“chimneying”). In preparations twice as thick, PMN in EDTA first exhibited active deformability with little or no displacement, then rounded up and became motionless. However, on creation of a chemotactic gradient, the same cells were able to orient and make their way to the target, often, however, losing momentarily their purchase on the substrate. In either of these preparations without EDTA, specific antibodies to β2 integrins did not prevent random locomotion or chemotaxis, even when we added antibodies to β1 and αvβ3 integrins and to integrin-associated protein, and none of these antibodies added anything to the effects of EDTA. In the more turbulent environment of even more media, effects of anti-β2 integrins became evident: PMN still could locomote but adhered to substrate largely by their uropods and by uropod-associated filaments. We relate these findings to the reported independence from integrins of PMN in certain experimental and disease states. Moreover, we suggest that PMN locomotion in close quarters is not only integrin-independent, but independent of external divalent cations as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A “most probable state” equilibrium statistical theory for random distributions of hetons in a closed basin is developed here in the context of two-layer quasigeostrophic models for the spreading phase of open-ocean convection. The theory depends only on bulk conserved quantities such as energy, circulation, and the range of values of potential vorticity in each layer. The simplest theory is formulated for a uniform cooling event over the entire basin that triggers a homogeneous random distribution of convective towers. For a small Rossby deformation radius typical for open-ocean convection sites, the most probable states that arise from this theory strongly resemble the saturated baroclinic states of the spreading phase of convection, with a stabilizing barotropic rim current and localized temperature anomaly.