50 resultados para random amplified polymorphic DNA (RAPD)
em National Center for Biotechnology Information - NCBI
Resumo:
Controversy still exists over the adaptive nature of variation of enzyme loci. In conifers, random amplified polymorphic DNAs (RAPDs) represent a class of marker loci that is unlikely to fall within or be strongly linked to coding DNA. We have compared the genetic diversity in natural populations of black spruce [Picea mariana (Mill.) B.S.P.] using genotypic data at allozyme loci and RAPD loci as well as phenotypic data from inferred RAPD fingerprints. The genotypic data for both allozymes and RAPDs were obtained from at least six haploid megagametophytes for each of 75 sexually mature individuals distributed in five populations. Heterozygosities and population fixation indices were in complete agreement between allozyme loci and RAPD loci. In black spruce, it is more likely that the similar levels of variation detected at both enzyme and RAPD loci are due to such evolutionary forces as migration and the mating system, rather than to balancing selection and overdominance. Furthermore, we show that biased estimates of expected heterozygosity and among-population differentiation are obtained when using allele frequencies derived from dominant RAPD phenotypes.
Resumo:
We have analyzed 75 isolates of Plasmodium falciparum, collected in Venezuela during both the dry (November) and rainy (May–July) seasons, with a range of genetic markers including antigen genes and 14 random amplified polymorphic DNA (RAPD) primers. Thirteen P. falciparum stocks from Kenya and four other Plasmodium species are included in the analysis for comparison. Cross-hybridization shows that the 14 RAPD primers reveal 14 separate regions of the parasite's genome. The P. falciparum isolates are a monophyletic clade, significantly different from the other Plasmodium species. We identify three RAPD characters that could be useful as “tags” for rapid species identification. The Venezuelan genotypes fall into two discrete genetic subdivisions associated with either the dry or the rainy season; the isolates collected in the rainy season exhibit greater genetic diversity. There is significant linkage disequilibrium in each seasonal subsample and in the full sample. In contrast, no linkage disequilibrium is detected in the African sample. These results support the hypothesis that the population structure of P. falciparum in Venezuela, but not in Africa, is predominantly clonal. However, the impact of genetic recombination on Venezuelan P. falciparum seems higher than in parasitic species with long-term clonal evolution like Trypanosoma cruzi, the agent of Chagas' disease. The genetic structure of the Venezuelan samples is similar to that of Escherichia coli, a bacterium that propagates clonally, with occasional genetic recombination.
Resumo:
Al-resistant (alr) mutants of Arabidopsis thaliana were isolated and characterized to gain a better understanding of the genetic and physiological mechanisms of Al resistance. alr mutants were identified on the basis of enhanced root growth in the presence of levels of Al that strongly inhibited root growth in wild-type seedlings. Genetic analysis of the alr mutants showed that Al resistance was semidominant, and chromosome mapping of the mutants with microsatellite and random amplified polymorphic DNA markers indicated that the mutants mapped to two sites in the Arabidopsis genome: one locus on chromosome 1 (alr-108, alr-128, alr-131, and alr-139) and another on chromosome 4 (alr-104). Al accumulation in roots of mutant seedlings was studied by staining with the fluorescent Al-indicator dye morin and quantified via inductively coupled argon plasma mass spectrometry. It was found that the alr mutants accumulated lower levels of Al in the root tips compared with wild type. The possibility that the mutants released Al-chelating organic acids was examined. The mutants that mapped together on chromosome 1 released greater amounts of citrate or malate (as well as pyruvate) compared with wild type, suggesting that Al exclusion from roots of these alr mutants results from enhanced organic acid exudation. Roots of alr-104, on the other hand, did not exhibit increased release of malate or citrate, but did alkalinize the rhizosphere to a greater extent than wild-type roots. A detailed examination of Al resistance in this mutant is described in an accompanying paper (J. Degenhardt, P.B. Larsen, S.H. Howell, L.V. Kochian [1998] Plant Physiol 117: 19–27).
Resumo:
Diploid (2n = 2x = 24) Solanum species with endosperm balance number (EBN) = 1 are sexually isolated from diploid 2EBN species and both tetraploid (2n = 4x = 48, 4EBN) and haploid (2n = 2x = 24, 2EBN) S. tuberosum Group Tuberosum. To sexually overcome these crossing barriers in the diploid species S. commersonii (1EBN), the manipulation of the EBN was accomplished by scaling up and down ploidy levels. Triploid F1 hybrids between an in vitro-doubled clone of S. commersonii (2n = 4x = 48, 2EBN) and diploid 2EBN clones were successfully used in 3x × 4x crosses with S. tuberosum Group Tuberosum, resulting in pentaploid/near pentaploid BC1 progenies. This provided evidence of 2n (3x) egg formation in the triploid female parents. Two selected BC1 pentaploid hybrids were successfully backcrossed both as male and as female parents with S. tuberosum Group Tuberosum. The somatic chromosome number varied greatly among the resulting BC2 progenies, which included hyperaneuploids, but also a number (4.8%) of 48-chromosome plants. The introgression of S. commersonii genomes was confirmed by the presence of S. commersonii-specific randomly amplified polymorphic DNA markers in the BC2 population analyzed. The results clearly demonstrate the feasibility of germplasm introgression from sexually isolated diploid 1EBN species into the 4x (4EBN) gene pool of the cultivated potato using sexual hybridization. Based on the amount and type of genetic variation generated, cumbersomeness, general applicability, costs, and other factors, it would be interesting to compare the approach reported here with other in vitro or in vivo, direct or indirect, approaches previously reported.
Resumo:
The African trypanosome, Trypanosoma brucei, has been shown to undergo genetic exchange in the laboratory, but controversy exists as to the role of genetic exchange in natural populations. Much of the analysis to date has been derived from isoenzyme or randomly amplified polymorphic DNA data with parasite material from a range of hosts and geographical locations. These markers fail to distinguish between the human infective (T. b. rhodesiense) and nonhuman infective (T. b. brucei) “subspecies” so that parasites derived from hosts other than humans potentially contain both subspecies. To overcome some of the inherent problems with the use of such markers and diverse populations, we have analyzed a well-defined population from a discrete geographical location (Busoga, Uganda) using three recently described minisatellite markers. The parasites were primarily isolated from humans and cattle with the latter isolates further characterized by their ability to resist lysis by human serum (equivalent to human infectivity). The minisatellite markers show high levels of polymorphism, and from the data obtained we conclude that T. b. rhodesiense is genetically isolated from T. b. brucei and can be unambiguously identified by its multilocus genotype. Analysis of the genotype frequencies in the separated T. b. brucei and T. b. rhodesiense populations shows the former has an epidemic population structure whereas the latter is clonal. This finding suggests that the strong linkage disequilibrium observed in previous analyses, where human and nonhuman infective trypanosomes were not distinguished, results from the treatment of two genetically isolated populations as a single population.
Resumo:
Bovine papillomavirus type 1 (BPV-1) induces fibropapillomas in its natural host and can transform fibroblasts in culture. The viral genome is maintained as an episome within fibroblasts, which has allowed extensive genetic analyses of the viral functions required for DNA replication, gene expression, and transformation. Much less is known about BPV-1 gene expression and replication in bovine epithelial cells because the study of the complete viral life cycle requires an experimental system capable of generating a fully differentiated stratified bovine epithelium. Using a combination of organotypic raft cultures and xenografts on nude mice, we have developed a system in which BPV-1 can replicate and produce infectious viral particles. Organotypic cultures were established with bovine keratinocytes plated on a collagen raft containing BPV-1-transformed fibroblasts. These keratinocytes were infected with virus particles isolated from a bovine wart or were transfected with cloned BPV-1 DNA. Several days after the rafts were lifted to the air interface, they were grafted on nude mice. After 6–8 weeks, large xenografts were produced that exhibited a hyperplastic and hyperkeratotic epithelium overlying a large dermal fibroma. These lesions were strikingly similar to a fibropapilloma caused by BPV-1 in the natural host. Amplified viral DNA and capsid antigens were detected in the suprabasal cells of the epithelium. Moreover, infectious virus particles could be isolated from these lesions and quantitated by a focus formation assay on mouse cells in culture. Interestingly, analysis of grafts produced with infected and uninfected fibroblasts indicated that the fibroma component was not required for productive infection or morphological changes characteristic of papillomavirus-infected epithelium. This system will be a powerful tool for the genetic analysis of the roles of the viral gene products in the complete viral life cycle.
Resumo:
Genetic analysis of limiting quantities of genomic DNA play an important role in DNA forensics, paleoarcheology, genetic disease diagnosis, genetic linkage analysis, and genetic diversity studies. We have tested the ability of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to amplify picogram quantities of human genomic DNA for the purpose of increasing the amount of template for genotyping with microsatellite repeat markers. DNA was uniformly amplified at a large number of typable loci throughout the human genome with starting template DNAs from as little as 15 pg to as much as 400 ng. A much greater-fold enrichment was seen for the smaller genomic DOP-PCRs. All markers tested were amplified from starting genomic DNAs in the range of 0.6–40 ng with amplifications of 200- to 600-fold. The DOP-PCR-amplified genomic DNA was an excellent and reliable template for genotyping with microsatellites, which give distinct bands with no increase in stutter artifact on di-, tri-, and tetranucleotide repeats. There appears to be equal amplification of genomic DNA from 55 of 55 tested discrete microsatellites implying near complete coverage of the human genome. Thus, DOP-PCR appears to allow unbiased, hundreds-fold whole genome amplification of human genomic DNA for genotypic analysis.
Resumo:
We describe a novel approach, selectively amplified microsatellite (SAM) analysis, for the targeted development of informative simple sequence repeat (SSR) markers. A modified selectively amplified microsatellite polymorphic loci assay is used to generate multi-locus SSR fingerprints that provide a source of polymorphic DNA markers (SAMs) for use in genetic studies. These polymorphisms capture the repeat length variation associated with SSRs and allow their chromosomal location to be determined prior to the expense of isolating and characterising individual loci. SAMs can then be converted to locus-specific SSR markers with the design and synthesis of a single primer specific to the conserved region flanking the repeat. This approach offers a cost-efficient and rapid method for developing SSR markers for predetermined chromosomal locations and of potential informativeness. The high recovery rate of useful SSR markers makes this strategy a valuable tool for population and genetic mapping studies. The utility of SAM analysis was demonstrated by the development of SSR markers in bread wheat.
Resumo:
We have developed a technique for isolating DNA markers tightly linked to a target region that is based on RLGS, named RLGS spot-bombing (RLGS-SB). RLGS-SB allows us to scan the genome of higher organisms quickly and efficiently to identify loci that are linked to either a target region or gene of interest. The method was initially tested by analyzing a C57BL/6-GusS mouse congenic strain. We identified 33 variant markers out of 10,565 total loci in a 4.2-centimorgan (cM) interval surrounding the Gus locus in 4 days of laboratory work. The validity of RLGS-SB to find DNA markers linked to a target locus was also tested on pooled DNA from segregating backcross progeny by analyzing the spot intensity of already mapped RLGS loci. Finally, we used RLGS-SB to identify DNA markers closely linked to the mouse reeler (rl) locus on chromosome 5 by phenotypic pooling. A total of 31 RLGS loci were identified and mapped to the target region after screening 8856 loci. These 31 loci were mapped within 11.7 cM surrounding rl. The average density of RLGS loci located in the rl region was 0.38 cM. Three loci were closely linked to rl showing a recombination frequency of 0/340, which is < 1 cM from rl. Thus, RLGS-SB provides an efficient and rapid method for the detection and isolation of polymorphic DNA markers linked to a trait or gene of interest.
Resumo:
The ability to carry out high-resolution genetic mapping at high throughput in the mouse is a critical rate-limiting step in the generation of genetically anchored contigs in physical mapping projects and the mapping of genetic loci for complex traits. To address this need, we have developed an efficient, high-resolution, large-scale genome mapping system. This system is based on the identification of polymorphic DNA sites between mouse strains by using interspersed repetitive sequence (IRS) PCR. Individual cloned IRS PCR products are hybridized to a DNA array of IRS PCR products derived from the DNA of individual mice segregating DNA sequences from the two parent strains. Since gel electrophoresis is not required, large numbers of samples can be genotyped in parallel. By using this approach, we have mapped > 450 polymorphic probes with filters containing the DNA of up to 517 backcross mice, potentially allowing resolution of 0.14 centimorgan. This approach also carries the potential for a high degree of efficiency in the integration of physical and genetic maps, since pooled DNAs representing libraries of yeast artificial chromosomes or other physical representations of the mouse genome can be addressed by hybridization of filter representations of the IRS PCR products of such libraries.
Resumo:
A computational system for the prediction of polymorphic loci directly and efficiently from human genomic sequence was developed and verified. A suite of programs, collectively called pompous (polymorphic marker prediction of ubiquitous simple sequences) detects tandem repeats ranging from dinucleotides up to 250 mers, scores them according to predicted level of polymorphism, and designs appropriate flanking primers for PCR amplification. This approach was validated on an approximately 750-kilobase region of human chromosome 3p21.3, involved in lung and breast carcinoma homozygous deletions. Target DNA from 36 paired B lymphoblastoid and lung cancer lines was amplified and allelotyped for 33 loci predicted by pompous to be variable in repeat size. We found that among those 36 predominately Caucasian individuals 22 of the 33 (67%) predicted loci were polymorphic with an average heterozygosity of 0.42. Allele loss in this region was found in 27/36 (75%) of the tumor lines using these markers. pompous provides the genetic researcher with an additional tool for the rapid and efficient identification of polymorphic markers, and through a World Wide Web site, investigators can use pompous to identify polymorphic markers for their research. A catalog of 13,261 potential polymorphic markers and associated primer sets has been created from the analysis of 141,779,504 base pairs of human genomic sequence in GenBank. This data is available on our Web site (pompous.swmed.edu) and will be updated periodically as GenBank is expanded and algorithm accuracy is improved.
Resumo:
To determine human Ig heavy chain variable region (VH) gene segment organization on individual homologous chromosomes, an efficient approach has been developed. Single spermatozoa were used as subjects for the study. Upon sperm lysis, VH regions in each sperm were randomly sheared into fragments by the random Brownian force. The fragments were separated from each other by aliquoting the lysate into a certain number of tubes. The gene segments in the VH1 and VH4 families in each tube were identified by denaturing gradient gel electrophoresis after PCR amplification. The polymorphic VH sequences were used to determine the parental origins of the analyzed sperm. VH segment organization in the parental haplotypes was determined by aligning the overlapping fragments from the spermatozoa with the corresponding haplotypes. Based on this comparison between the resulting haplotype maps and the composite map reported previously, the VH region on chromosome 14 could be subdivided into four portions. The numbers and compositions of the VH gene segments differ considerably among the maps in two portions, but are highly conserved in the other two. The data also indicate that the VH region on chromosome 15 may contain a large duplicated block with copy number varying among haplotypes. The approach used in the present study may be used to construct high-resolution haplotype maps without molecular cloning.
Resumo:
Expression of Thermus aquaticus (Taq) DNA polymerase I (pol I) in Escherichia, coli complements the growth defect caused by a temperature-sensitive mutation in the host pol I. We replaced the nucleotide sequence encoding amino acids 659-671 of the O-helix of Taq DNA pol I, corresponding to the substrate binding site, with an oligonucleotide containing random nucleotides. Functional Taq pol I mutants were selected based on colony formation at the nonpermissive temperature. By using a library with 9% random substitutions at each of 39 positions, we identified 61 active Taq pol I mutants, each of which contained from one to four amino acid substitutions. Some amino acids, such as alanine-661 and threonine-664, were tolerant of several or even many diverse replacements. In contrast, no replacements or only conservative replacements were identified at arginine-659, lysine-663, and tyrosine-671. By using a library with totally random nucleotides at five different codons (arginine-659, arginine-660, lysine-663, phenylalanine-667, and glycine-668), we confirmed that arginine-659 and lysine-663 were immutable, and observed that only tyrosine substituted for phenylalanine-667. The two immutable residues and the two residues that tolerate only highly conservative replacements lie on the side of O-helix facing the incoming deoxynucleoside triphosphate, as determined by x-ray analysis. Thus, we offer a new approach to assess concordance of the active conformation of an enzyme, as interpreted from the crystal structure, with the active conformation inferred from in vivo function.
Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria.
Resumo:
DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.
Resumo:
Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.